957 resultados para Mn:YAP
Resumo:
Dilute magnetic nonpolar GaN films have been fabricated by implanting Mn into unintentionally doped nonpolar a-plane GaN films at room temperature, and a subsequent rapid thermal annealing. The X-ray diffraction analysis shows that after rapid thermal annealing the peak of the GaN X-ray diffraction curve shifts to a lower angle, indicating a slight expansion of the GaN crystal lattice. Atomic force microscopy analysis shows that the annealing process does not change the morphology of the sample greatly. Magnetic property analysis indicates that the as-annealed sample shows obvious ferromagnetic properties. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Calculations of electronic structures and optical properties of Mg (or Si) and Mn co-doped GaN were carried out by means of first-principle plane-wave pesudopotential (PWP) based on density functional theory - The spin polarized impurity bands of deep energy levels were found for both systems. They are half metallic and suitable for spin injectors. Compared with GaN Mn, GaN Mn-Mg exhibits a significant increase in T-C 1 while the 1.3 eV absorption peak in GaN Mn disappears due to addition of Mg. In addition, a strong absorption peak due to T-4(1) (F) -> T-4(2) (F) transition of Mn4+ were observed near 1.1 eV. Nevertheless, GaN Mn-Si failed to show increase of T-C, and the absorption peak was not observed at the low energy side.
Resumo:
Nonpolar GaN Mn films have been fabricated by implanting Mn-ion into nonpolar a-plane (MO) GaN films at room temperature. The influence of implantation energy on the Structural, morphological and magnetic characteristics of samples have been investigated by means of stopping and range of ions in matter (SRIM) Simulation software, high-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), and superconducting quantum interference device (SQUID). According to the SQUID analysis, obvious room temperature ferromagnetic properties of samples were detected. Moreover, the implantation energy has little impact on the ferromagnetic properties of samples. The XRD and AFM analyses show that the structural and morphological characteristics of samples were severely deteriorated with the increase of implantation energy. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We report the low-temperature magnetotransport behaviors of (Ga,Mn)As films with the nominal Mn concentration x larger than 10%. The ferromagnetic transition temperature T-C can be enhanced to 191 K after postgrowth annealing (Ga,Mn)As with x=20%. The temperature T-m, corresponding to the resistivity minimum in the curve of resistivity versus temperature at temperature below T-C, depends on Mn concentration, annealing condition, and magnetic field. Moreover, we find that the variable-range hopping may be the main conductive mechanism when temperature is lower than T-m.
Resumo:
Different submicron ferromagnets are fabricated into GaAs and GaAs/AlGaAs superlattice through ion implantation at two different temperatures followed by thermal annealing. The structural and magnetic properties of the granular film are studied by an atomic force microscope, X-ray diffraction and alternating gradient magnetometer. By analyzing the saturation magnetization M-s, remanence M-r, coercivity H-c and remanence ratio S-q, it is confirmed that both MnGa and MnAs clusters are formed in the 350degreesC-implanted samples whereas only MnAs clusters are formed in the room-temperature implanted samples. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Mn+ irons were implanted to n-type Ge(1 1 1) single crystal at room temperature with an energy of 100 keV and a dose of 3 x 10(16) cm(-2). Subsequently annealing was performed at 400degreesC for 1 h under flowing nitrogen gas. X-ray diffraction measurements show that as-implanted sample is amorphous and the structure of crystal is restored after annealing. Polycrystalline germanium is formed in annealed sample. There are no new phases found except germanium. The samples surface morphologies indicate that annealed sample has island-like feature while there is no such kind of characteristic in as-implanted sample. The elemental composition of annealed sample was analyzed by Auger electron spectroscopy. It shows that manganese ions are deeply implanted into germanium substrate and the highest manganese atomic concentration is 8% at the depth of 120 nm. The magnetic properties of samples were investigated by an alternating gradient magnetometer. The annealed sample shows ferromagnetic behavior at room temperature. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
High dose Mn was implanted into semi-insulating GaAs substrate to fabricate embedded ferromagnetic Mn-Ga binary particles by mass-analyzed dual ion beam deposit system at room temperature. The properties of as-implanted and annealed samples were measured with X-ray diffraction, high-resolution X-ray diffraction to characterize the structural changes. New phase formed after high temperature annealing. Sample surface image was observed with atomic force microscopy. All the samples showed ferromagnetic behaviour at room temperature. There were some differences between the hysteresis loops of as-implanted and annealed samples as well as the cluster size of the latter was much larger than that of the former through the surface morphology. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Diluted magnetic semiconductor (Ga,Mn)N were prepared by the implantation of Mn ions into GaN/Al2O3 substrate. Clear X-ray diffraction peak from (Ga,Mn)N is observed. It indicates that the solid solution (Ga,Mn)N phase was formed with the same lattice structure as GaN and different lattice constant. Magnetic hysteresis-loops of the (Ga,Mn)N were obtained at room temperature (293 K) with the coercivity of about 2496.97 A m(-1). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The YCo5.0-xMnxGa7.0 compounds crystallize with the ScFe6Ga6-type structure. The lattice of YCo5.0-xMnxGa7.0 expands with the increase of the Mn content for 0.05 <= x <= 2.5, but the lattice of YCo2.0Mn3.0Ga7.0 shrinks compared with YCo2.5Mn2.5Ga7.0. The shrinkage of the lattice is attributed to the magnetostriction of YCo2.0Mn3.0Ga7.0. The substitution of Mn for Co forms magnetic clusters in the antiferromagnetic matrix. The magnetic frustration results in the spin-glass-like behavior for 0.8 <= x <= 1.5 and the difference between zero-field-cooling (ZFC) and field-cooling (FC) magnetizations for x = 2.0, 2.5, and 3.0. A stable long-range magnetic ordering appears among the Mn-centered magnetic clusters with the ordering temperature 110 K for x = 2.0. The hump in the thermomagnetization of YCo3.0Mn2.0Ga7.0 can be attributed to the competitive effects between the thermal fluctuation and the enhanced magnetic interaction. Both the hump and the bifurcation between the ZFC and the FC magnetizations of YCo3.0Mn2.0Ga7.0 occur at lower temperatures as the applied field increases. On the two-step magnetization curve of YCo3.0Mn2.0Ga7.0, the inflection point at 4000 Oe is due to the coercive field, and the magnetic moments in the clusters are tilted to the applied field above 4000 Oe. The magnetic ordering temperature is further increased to 210 K for x = 2.5 and to 282 K for x = 3.0. The spontaneous magnetization of YCo2.0Mn3.0Ga7.0 is 0.575 mu B/f.u. at 5 K with a canted magnetic structure.
Resumo:
The stability of the excellent permanent magnetic compound Nd2Fe14B and substitution of Fe in the compound by V, Cr, Mn, Zr and Nb are investigated by using interatomic pair potentials which are converted from lattice-inversion method. Calculation shows that the substitution always makes the cell volume larger, and the increase of the volume is almost linear with substituent concentration. The calculated cohesive energy shows that the preferential order of substitution of Fe is Nb, V, Cr, Mn, Zr. Nevertheless, all the five substituting elements should most preferentially replace Fe in the j(2)' site, which has the greatest space among all six Fe sites. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The Ga1-xMnxSb samples were fabricated by the implantation of Mn ions into GaSb (1 0 0) substrate with mass-analyzed low-energy dual ion beam deposition system, and post-annealing. Auger electron spectroscopy depth profile of the Ga1-xMnxSb samples showed that the Mn ions were successfully implanted into GaSb substrate. Clear double-crystal X-ray diffraction patterns of the Ga1-xMnxSb samples indicate that the Ga1-xMnxSb epilayers have the zinc-blende structure without detectable second phase. Magnetic hysteresis-loop of the Ga1-xMnxSb epilayers were obtained at room temperature (293 K) with alternating gradient magnetometry. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Mn-doped ZnS nanocrystals of about 3 nm diameter were synthesized by a wet chemical method. X-ray diffraction (XRD) measurements showed that the nanocrystals have the structure of cubic zinc blende. The broadening of the XRD lines is indicative of nanomaterials. Room temperature photoluminescence (PL) spectrum of the undoped sample only exhibited a defected-related blue emission band. But for the doped samples, an orange emission from the Mn2+ T-4(1)-(6)A(1) transition was also observed, apart from the blue emission. The peak position (600 nm) of the Mn2+ emission was shifted to longer wavelength compared to that (584 nm) of bulk ZnS:Mn. With the increase of the Mn2+ concentration, the PL of ZnS:Mn was significantly enhanced. The concentration quenching effect was not observed in our experiments. Such PL phenomena were attributed to the absence of Mn2+ pairs in a single ZnS:Mn nanocrystal, considering the nonradiative energy transfer between Mn2+ ions based on the Poisson approximation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Using a solution-based chemical method, we have prepared ZnS nanocrystals doped with high concentration of Mn2+. The X-ray diffraction analysis confirmed a zinc blende structure. The average size was about 3 nm. Photoluminescence spectrum showed room temperature emission in the visible spectrum, which consisted of the defect-related emission and the T-4(1)-(6)A(1) emission of Mn2+ ions. Compared with the undoped sample, the luminescence of the ZnS:Mn sample is enhanced by more than an order of magnitude, which indicated that the Mn2+ ions can efficiently boost the luminescence of ZnS nanocrystals.
Resumo:
The PL spectra for the 10, 4. 5, 3. 5, 3, 1 nm sized ZnS:Mn2+ nanoparticles and corresponding bulk material under different pressures were investigated. The orange emission band originated from the T-4(1)-(6)A(1) transition of Mn2+ ions showed obvious red shift with the increasing of pressures. The pressure coefficients of Mn-related emissions measured from bulk, 10, 4. 5, 3.5 and 3 nm samples are -29.4 +/- 0.3, -30.1 +/- 0.3, -33.3 +/- 0.6, -34.6 +/- 0.8 and -39 +/- 1 meV/GPa, respectively. The absolute value of the pressure coefficient increases with the decrease of the size of particles. The size dependence of crystal field strength Dq and Racah parameter B accounts for the size behavior of the Mn-related emission in ZnS:Mn nanoparticles. The pressure behavior of Mn-related emission in the 1 nm sized sample is somewhat different from that of other nanoparticles. It may be due to smaller size of 1 nm sample and the special surface condition since ZnS nanoparticles are formed in the cavities of ziolite-Y for the 1 nm sample.
Resumo:
Doping of magnetic element Mn and Cr in GaN was achieved by thermal diffusion. The conductivity of the samples, which were all n-type, did not change significantly after the diffusion doping. X-ray diffraction measurements revealed no secondary phase in the samples. Experiments using superconducting quantum interference device (SQUID) showed that the samples were ferromagnetic at 5 and 300 K, implying the Curie temperature to be around or over 300 K, despite their n-type conductivity. (c) 2004 Elsevier B.V. All rights reserved.