980 resultados para Internet enabled internationalization
Resumo:
This article presents an overview of two aspects of the role the internet now plays in the court system - first, the extent to which judges, administrators and court officials at the different levels in the court hierarchy are using the internet to deliver enhanced access to the Australian justice system for the community as a whole, and second, how they have embraced that same technology as an aid for accessing information for better judgment delivery and administration.
Resumo:
This thesis delivers new knowledge about how Australian community arts practices of appropriate technology are shifting due to the internet. It reconfigures the sector's incumbent ethics of sustainability in response to emerging concerns about how the internet's material politics are affecting cultural participation.
Resumo:
This teaching case describes how SAP, a leading global information technology (IT) solutions provider, embarked on a large-scale transformation program to implement a dual sustainability strategy of: (a) internally transforming the organization, and (b) addressing a business opportunity by developing IT solutions that enable their customers to become more sustainable. This case provides students with significant information about the development of SAP towards sustainability, including the company's underlying motivation, their approach to change and related challenges, and their use of IT to enable the transformation. The teaching case provides an opportunity to critically examine the benefits and risks of using IT in an effort to improve the sustainability of an organization, and to develop appropriate models for sustainable strategies and IT implementation efforts.
Resumo:
Ferromagnetism in graphene is fascinating, but it is still a big challenge for practical applications due to the weak magnetization. In order to enhance the magnetization, here, we design plasma-enabled graphene nanopetals with ultra-long defective edges of up to 105 m/g, ultra-dense lattice vacancies, and hydrogen chemisorptions. The designed graphene nanopetals display robust ferromagnetism with large saturation magnetization of up to 2 emu/g at 5 K and 1.2 emu/g at room temperatures. This work identifies the plasma-enabled graphene nanopetals as a promising candidate for graphene-based magnetic devices.
Resumo:
Different magnetization in vertical graphenes fabricated by plasma-enabled chemical conversion of organic precursors with various oxygen atom contents and bonding energies was achieved. The graphenes grown from fat-like precursors exhibit magnetization up to 8 emu g−1, whereas the use of sugar-containing precursors results in much lower numbers. A relatively high Curie temperature exceeding 600 K was also demonstrated.
Resumo:
Low-temperature plasmas in direct contact with arbitrary, written linear features on a Si wafer enable catalyst-free integration of carbon nanotubes into a Si-based nanodevice platform and in situ resolution of individual nucleation events. The graded nanotube arrays show reliable, reproducible, and competitive performance in electron field emission and biosensing nanodevices.
Resumo:
Controlled self-organized growth of vertically aligned carbon nanocone arrays in a radio frequency inductively coupled plasma-based process is studied. The experiments have demonstrated that the gaps between the nanocones, density of the nanocone array, and the shape of the nanocones can be effectively controlled by the process parameters such as gas composition (hydrogen content) and electrical bias applied to the substrate. Optical measurements have demonstrated lower reflectance of the nanocone array as compared with a bare Si wafer, thus evidencing their potential for the use in optical devices. The nanocone formation mechanism is explained in terms of redistribution of surface and volumetric fluxes of plasma-generated species in a developing nanocone array and passivation of carbon in narrow gaps where the access of plasma ions is hindered. Extensive numerical simulations were used to support the proposed growth mechanism.
Resumo:
Simple, rapid, catalyst-free synthesis of complex patterns of long, vertically aligned multiwalled carbon nanotubes, strictly confined within mechanically-written features on a Si(1 0 0) surface is reported. It is shown that dense arrays of the nanotubes can nucleate and fully fill the features when the low-temperature microwave plasma is in a direct contact with the surface. This eliminates additional nanofabrication steps and inevitable contact losses in applications associated with carbon nanotube patterns. Using metal catalyst has long been considered essential for the nucleation and growth of surface-supported carbon nanotubes (CNTs) [1] and [2]. Only very recently, the possibility of CNT growth using non-metallic (e.g., oxide [3] and SiC [4]) catalysts or artificially created carbon-enriched surface layers [5] has been demonstrated. However, successful integration of carbon nanostructures into Si-based nanodevice platforms requires catalyst-free growth, as the catalyst nanoparticles introduce contact losses, and their catalytic activity is very difficult to control during the growth [6]. Furthermore, in many applications in microfluidics, biological and molecular filters, electronic, sensor, and energy conversion nanodevices, the CNTs need to be arranged in specific complex patterns [7] and [8]. These patterns need to contain the basic features (e.g., lines and dots) written using simple procedures and fully filled with dense arrays of high-quality, straight, yet separated nanotubes. In this paper, we report on a completely metal or oxide catalyst-free plasma-based approach for the direct and rapid growth of dense arrays of long vertically-aligned multi-walled carbon nanotubes arranged into complex patterns made of various combinations of basic features on a Si(1 0 0) surface written using simple mechanical techniques. The process was conducted in a plasma environment [9] and [10] produced by a microwave discharge which typically generates the low-temperature plasmas at the discharge power below 1 kW [11]. Our process starts from mechanical writing (scribing) a pattern of arbitrary features on pre-treated Si(1 0 0) wafers. Before and after the mechanical feature writing, the Si(1 0 0) substrates were cleaned in an aqueous solution of hydrofluoric acid for 2 min to remove any possible contaminations (such as oil traces which could decompose to free carbon at elevated temperatures) from the substrate surface. A piece of another silicon wafer cleaned in the same way as the substrate, or a diamond scriber were used to produce the growth patterns by a simple arbitrary mechanical writing, i.e., by making linear scratches or dot punctures on the Si wafer surface. The results were the same in both cases, i.e., when scratching the surface by Si or a diamond scriber. The procedure for preparation of the substrates did not involve any possibility of external metallic contaminations on the substrate surface. After the preparation, the substrates were loaded into an ASTeX model 5200 chemical vapour deposition (CVD) reactor, which was very carefully conditioned to remove any residue contamination. The samples were heated to at least 800 °C to remove any oxide that could have formed during the sample loading [12]. After loading the substrates into the reactor chamber, N2 gas was supplied into the chamber at the pressure of 7 Torr to ignite and sustain the discharge at the total power of 200 W. Then, a mixture of CH4 and 60% of N2 gases were supplied at 20 Torr, and the discharge power was increased to 700 W (power density of approximately 1.49 W/cm3). During the process, the microwave plasma was in a direct contact with the substrate. During the plasma exposure, no external heating source was used, and the substrate temperature (∼850 °C) was maintained merely due to the plasma heating. The features were exposed to a microwave plasma for 3–5 min. A photograph of the reactor and the plasma discharge is shown in Fig. 1a and b.
Resumo:
We report the catalyst-free synthesis of the arrays of core–shell, ultrathin, size-uniform SiC/AlSiC nanowires on the top of a periodic anodic aluminum oxide template. The nanowires were grown using an environmentally friendly, silane-free process by exposing the silicon supported porous alumina template to CH4 + H2 plasmas. High-resolution scanning and transmission electron microscopy studies revealed that the nanowires have a single-crystalline core with a diameter of about 10 nm and a thin (1–2 nm) amorphous AlSiC shell. Because of their remarkable length, high aspect ratio, and very high surface area-to-volume ratio, these unique structures are promising for nanoelectronic and nanophotonic applications that require efficient electron emission, light scattering, etc. A mechanism for nanowire growth is proposed based upon the reduction of the alumina template to nanosized metallic aluminum droplets forming between nanopores. The subsequent incorporation of silicon and carbon atoms from the plasma leads to nucleation and growth from the top of the alumina template.
Resumo:
The formation of vertically aligned, clearly separated, copper-capped carbon nanocones with a length of up to 500 nm and base diameter of about 150 nm via three-stage process involving magnetron sputtering, N2 plasma treatment, and CH4 + N2 plasma growth is studied. The width of gaps between the nanocones can be controlled by the gas composition. The nanocone formation mechanism is explained in terms of strong passivation of carbon in narrow gaps, where the access of plasma ions is hindered and the formation of large Cn H2n+2 molecules is possible. This plasma-enabled approach can be used to fabricate nanoelectronic, nanofluidic, and optoelectronic components and devices. © 2010 American Institute of Physics.
Resumo:
This article reports on the lowerature inductively coupled plasma-enabled synthesis of ultralong (up to several millimeters in length) SiO2 nanowires, which were otherwise impossible to synthesize without the presence of a plasma. Depending on the process conditions, the nanowires feature straight, helical, or branched morphologies. The nanowires are amorphous, with a near-stoichiometric elemental composition ([O] / [Si] =2.09) and are very uniform throughout their length. The role of the ionized gas environment is discussed and the growth mechanism is proposed. These nanowires are particularly promising for nanophotonic applications where long-distance and channelled light transmission and polarization control are required.
Resumo:
Plasma-assisted synthesis of nanostructures is one of the most precise and effective approaches used in nanodevice fabrication. Here we report on the innovative approach of synthesizing nanostructured cadmium oxide films on Cd substrates using a reactive oxygen plasma-based process. Under certain conditions, the surface morphology features arrays of crystalline CdO nano/micropyramids. These nanostructures grow via unconventional plasma-assisted oxidation of a cadmium foil exposed to inductively coupled plasmas with a narrow range of process parameters. The growth of the CdO pyramidal nanostructures takes place in the solid-liquid-solid phase, with the rates determined by the interaction of plasma-produced oxygen atoms and ions with the surface. It is shown that the size of the pyramidal structures can be effectively controlled by the fluxes of oxygen atoms and ions impinging on the cadmium surface. The unique role of the reactive plasma environment in the controlled synthesis of CdO nanopyramidal structures is discussed as well.
Resumo:
Silicon carbide is one of the promising materials for the fabrication of various one- and two-dimensional nanostructures. In this chapter, we discuss experimental and theoretical studies of the plasma-enabled fabrication of silicon carbide quantum dots, nanowires, and nanorods. The discussed fabrication methods include plasma-assisted growth with and without anodic aluminium oxide membranes and with or without silane as a source of silicon. In the silane-free experiments, quartz was used as a source of silicon to synthesize the silicon carbide nanostructures in an environmentally friendly process. The mechanism of the formation of nanowires and nanorods is also discussed.
Resumo:
In this final chapter we will raise a number of issues that we have encountered as we have put this collection of papers together. In doing this, we also reflect upon the seven challenges for video game theory that Bernard Perron and Mark Wolf(2009)put forward in the introduction to the second video game theory reader given it is probably one of the most recent assessments in the area at the time of writing. These challenges are concerned with Terminology and Accuracy, History, Methodology, Technology, Interactivity, Play and the Integration of Interdisciplinary Approaches. These issues will be brought up throughout this chapter, but not necessarily in mutually exclusive fashion...