391 resultados para InN
Resumo:
Because of the wide variety of projected applications of ultrapure nitrides in advanced technologies, there is interest in developing new cost-effective methods of synthesis. Explored in this study is the use of ammonia and hydrazine for the synthesis of nitrides from oxides, sulfides and chlorides. Even when the standard Gibbs energy change for the nitridation reactions involved are moderately positive, the reaction can be made to proceed by lowering the partial pressure of the product gas below its equilibrium value. Use of a metastable form of precursor in the nanometric size range is an alternative method to facilitate nitridation. Ellingham-Richardson-Jeffes diagrams are used for a panoramic presentation of the driving force for each set of reactions as a function of temperature. Oxides are the least promising precursors for nitride synthesis; sulfides offer a larger synthetic window for many useful nitrides such as BN, AlN, InN, VN, TiN, ThN and Si3N4. The standard Gibbs free energy changes for reactions involving chlorides with either ammonia or hydrazine are much more negative. Hydrazine is a more powerful nitriding agent than ammonia. The metastability of hydrazine requires that it be introduced into a reactor through a water-cooled lance. The use of volatile halides with ammonia or hydrazine offers the potential for synthesis of pure and doped nanocrystalline nitrides. Nitride thin films can also be prepared by suitable adaptations of the chloride route. (C) 2002 Kluwer Academic Publishers.
Resumo:
The indium nitride (InN)-based nanometric-objects were grown directly on a c-sapphire substrate by using plasma-assisted molecular beam epitaxy (PAMBE) at different substrate temperatures. High resolution X-ray diffraction (HRXRD) reveals the InN (0002) reflection and full width at half maximum (FWHM) found to be decreased with increasing the growth temperature. The size, height and density of the grown nanometric-objects studied by scanning electron microscopy (SEM) has remarkable differences, evidencing the decisive role of substrate temperature. Photoluminescence (PL) studies revealed that the emission energy is shifted towards the higher side from the bulk value, i.e., a blue shift in the PL spectra was observed. The temperature dependence of the PL peak position shows an ``S-shaped'' emission energy shift, which can be attributed to the localization of carriers in the nanometric-objects.
Resumo:
Investigations were carried out on the ambient condition oxidation of self-assembled, fairly uniform indium nitride (InN) quantum dots (QDs) fabricated on p-Si substrates. Incorporation of oxygen in to the outer shell of the QDs was confirmed by the results of transmission electron microscopy (TEM), X-ray photoemission spectroscopy (XPS). As a consequence, a weak emission at high energy (similar to 1.03?eV) along with a free excitonic emission (0.8?eV) was observed in the photoluminescence spectrum. The present results confirm the incorporation of oxygen into the lattice of the outer shell of InN QDs, affecting their emission properties. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
GaN/Si3N4/n-Si and InN/Si3N4/n-Si heterojunctions (HJs) were fabricated using plasma-assisted molecular beam epitaxy for a comparison study. Single-crystalline wurtzite structures of GaN and InN epilayers were confirmed by high-resolution X-ray diffraction and thickness of ultrathin Si3N4 layer was measured by transmission electron microscopy. n-GaN/Si3N4/n-Si HJs show diode-like rectifying current-voltage (I-V) characteristic, while n-InN/Si3N4/n-Si HJs show symmetric nonlinear I-V behavior. The I-V characteristics of both HJs were discussed in terms of the band diagram of HJs and the carrier transport mechanism. The activation energies of carrier conduction were estimated to be similar to 29 meV for GaN/Si3N4/Si and similar to 95 meV for InN/Si3N4/Si HJs. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
The thermal oxidation process of the indium nitride (InN) nanorods (NRs) was studied. The SEM studies reveal that the cracked and burst mechanism for the formation of indium oxide (In2O3) nanostructures by oxidizing the InN NRs at higher temperatures. XRD results confirm the bcc crystal structure of the as prepared In2O3 nanostructures. Strong and broad photoluminescence spectrum located at the green to red region with maximum intensity at 566 nm along with a weak ultraviolet emission at 338 nm were observed due to oxygen vacancy levels and free excitonic transitions, respectively. The valence band onset energy of 2.1 eV was observed from the XPS valence band spectrum, clearly justifies the alignment of Fermi level to the donor level created due to the presence of oxygen vacancies which were observed in the PL spectrum. The elemental ratio In:O in as prepared In2O3 was found to be 42:58 which is in close agreement with the stoichiometric value of 40:60. A downward shift was observed in the Raman peak positions due to a possible phonon confinement effect in the nanoparticles formed in bursting mechanism. Such single junction devices exhibit promising photovoltaic performance with fill factor and conversion efficiency of 21% and 0.2%, respectively, under concentrated AM1.5 illumination.
Resumo:
In the last few years, there has been remarkable progress in the development of group III-nitride based materials because of their potential application in fabricating various optoelectronic devices such as light emitting diodes, laser diodes, tandem solar cells and field effect transistors. In order to realize these devices, growth of device quality heterostructures are required. One of the most interesting properties of a semiconductor heterostructure interface is its Schottky barrier height, which is a measure of the mismatch of the energy levels for the majority carriers across the heterojunction interface. Recently, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nitride-based opto-electronic devices. It is well known that the c-axis oriented optoelectronic devices are strongly affected by the intrinsic spontaneous and piezoelectric polarization fields, which results in the low electron-hole recombination efficiency. One of the useful approaches for eliminating the piezoelectric polarization effects is to fabricate nitride-based devices along non-polar and semi-polar directions. Heterostructures grown on these orientations are receiving a lot of focus due to enhanced behaviour. In the present review article discussion has been carried out on the growth of III-nitride binary alloys and properties of GaN/Si, InN/Si, polar InN/GaN, and nonpolar InN/GaN heterostructures followed by studies on band offsets of III-nitride semiconductor heterostructures using the x-ray photoelectron spectroscopy technique. Current transport mechanisms of these heterostructures are also discussed.
Resumo:
The 13th Annual Larval Fish Conference and Annual Meeting of the American Fisheries Society Early Life History Section cohosted by Mote Marine Laboratory, United States, and the Instituto Nacional de la Pesca, Mexico, were held 21-26 May 1989, in Merida, Yucatan, Mexico. The purpose of holding the meeting in Mexico was to encourage the participation of our Latin American and Caribbean colleagues and to provide a forum for the exchange of ideas and information among researchers working in the Americas. More than 150 participants represented 24 U.S. states, the District of Columbia, and 13 foreign countries including Mexico, Canada, Puerto Rico, Costa Rico, Panama, Cuba, Columbia, Chile, Peru, Brazil, Argentina, South Africa, and West Germany. The Conference began with registration and a social in the courtyard patio of the Merida Holiday Inn. Fresh red grouper, the most important commercial finfish species of the State of Yucatan, was prepared and served by the hotel staff, courtesy of CPI, Itzamex, and the Terramar Trading Company. (PDF file contains 146 pages.)
Resumo:
A study of the composition and distribution of fish populations in the inshore, surface and bottom water habitats of Kangimi Reservoir showed that the most abundant family was the Cichlidae followed in order of abundance by the familiesCyprinidae, Schilbeidae, Mormyridae, Mochokidae, Characidae, centropomidae and Bagridae. Though the overall composition of families caught inn the three habitats did not vary significantly (P>0.05) only family Cichlidae showed habitat preference: there was a preponderance of Cichlidae in the inshore water habitat (P<0.05). The families Bagridae and Centropomidae were caught only in the inshore and bottom water habitats while the other families were caught from all habitats and showed no habitat preference. The dominance of primary and secondary consumers indicates high fish production potential under adequate management
Resumo:
We demonstrate modulations of electrical conductance and hysteresis behavior in ZnO nanowire transistors via electrically polarized switching of ferroelectric liquid crystal (FLC). After coating a nanowire channel in the transistors with FLCs, we observed large increases in channel conductance and hysteresis width, and a strong dependence of hysteresis loops on the polarization states associated with the orientation of electric dipole moments along the direction of the gate electric field. Furthermore, the reversible switching and retention characteristics provide the feasibility of creating a hybrid system with switch and memory functions. © 2013 American Institute of Physics.
Resumo:
The efficiencies of InxGa1-xN two-junction solar cells are calculated with various bandgap combinations of subcells under AM1.5 global, AM1.5 direct and AM0 spectra. The influence of top-cell thickness on efficiency has been studied and the performance of InxGa1-xN cells for the maximum light concentration of various spectra has been evaluated. Under one-sun irradiance, the optimum efficiency is 35.1% for the AM1.5 global spectrum, with a bandgap combination of top/bottom cells as 1.74 eV/1.15 eV. And the limiting efficiency is 40.9% for the highest light concentration of the AM1.5 global spectrum, with the top/bottom cell bandgap as 1.72 eV/1.12 eV.
Resumo:
A heterojunction structure photodetector was fabricated by evaporating a semitransparent Ni/Au metal film oil the InGaN/GaN structure. The photocurrent (PC) spectra show that both the Schottky junction (NiAu/InGaN) and the InGaN/GaN isotype heterojunction contribute to the PC signal which suggests that two junctions are connected in series and result in a broader spectral response of the device. Secondary electron, cathodoluminescence and electron-beam-induced current images measured from the same area of the edge surface clearly reveal the profile of the layer structure and distribution of the built-in electric field around the two junctions. A band diagram of the device is drawn based oil the consideration of the polarization effect at the InGaN/GaN interface. The analysis is consistent with the physical mechanism of a tandem structure of two junctions connected in series.
Resumo:
InGaN photovoltaic structures with p-n junctions have been fabricated by metal organic chemical vapour deposition. Using double-crystal X-ray diffraction measurements, it was found that the room temperature band gaps of p-InGaN and n-InGaN films were 2.7 and 2.8 eV, respectively. Values of 3.4 x 10(-2) mA cm(-2) short-circuit current, 0.43 V open-circuit voltage and 0.57 fill factor have been achieved under ultraviolet illumination (360 nm), which were related to p-n junction connected back-to-back with a Schottky barrier and many defects of the p-InGaN film. 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The performances of In0.65Ga0.35N single-junction solar cells with different structures, including various doping densities and thicknesses of each layer, have been simulated. It is found that the optimum efficiency of a In0.65Ga0.35N solar cell is 20.284% with 5 x 10(17) cm(-3) carrier concentration of the front and basic regions, a 130 nm thick p-layer and a 270 nm thick n-layer.
Resumo:
InGaN p-i-n homojunction structures were grown by metal-organic chemical vapor deposition, and solar cells with different p-contact schemes were fabricated. X-ray diffraction measurements demonstrated that the epitaxial layers have a high crystalline quality. Solar cells with semitransparent p-contact exhibited a fill factor (FF) of 69.4%, an open-circuit voltage (V-oc) of 2.24 V and an external quantum efficiency (EQE) of 41.0%. On the other hand, devices with grid p-contact showed the corresponding values of 57.6%, 2.36 V, 47.9% and a higher power density. These results indicate that significant photo-responses can be achieved in InGaN p-i-n solar cells.
Resumo:
Using the first-principles band-structure method and the special quasirandom structures approach, the authors have investigated the band structure of random AlxInyGa1-x-yN quaternary alloys. They show that the wave functions of the band edge states are more localized on the InN sites. Consequently, the photoluminescence transition intensity in the alloy is higher than that in GaN. The valence band maximum state of the quaternary alloy is also higher than GaN with the same band gap, indicating that the alloy can be doped more easily as p-type. (c) 2007 American Institute of Physics.