971 resultados para Holder-type discrete functions
Resumo:
We consider an equilibrium birth and death type process for a particle system in infinite volume, the latter is described by the space of all locally finite point configurations on Rd. These Glauber type dynamics are Markov processes constructed for pre-given reversible measures. A representation for the ``carré du champ'' and ``second carré du champ'' for the associate infinitesimal generators L are calculated in infinite volume and for a large class of functions in a generalized sense. The corresponding coercivity identity is derived and explicit sufficient conditions for the appearance and bounds for the size of the spectral gap of L are given. These techniques are applied to Glauber dynamics associated to Gibbs measure and conditions are derived extending all previous known results and, in particular, potentials with negative parts can now be treated. The high temperature regime is extended essentially and potentials with non-trivial negative part can be included. Furthermore, a special class of potentials is defined for which the size of the spectral gap is as least as large as for the free system and, surprisingly, the spectral gap is independent of the activity. This type of potentials should not show any phase transition for a given temperature at any activity.
Resumo:
New representations and efficient calculation methods are derived for the problem of propagation from an infinite regularly spaced array of coherent line sources above a homogeneous impedance plane, and for the Green's function for sound propagation in the canyon formed by two infinitely high, parallel rigid or sound soft walls and an impedance ground surface. The infinite sum of source contributions is replaced by a finite sum and the remainder is expressed as a Laplace-type integral. A pole subtraction technique is used to remove poles in the integrand which lie near the path of integration, obtaining a smooth integrand, more suitable for numerical integration, and a specific numerical integration method is proposed. Numerical experiments show highly accurate results across the frequency spectrum for a range of ground surface types. It is expected that the methods proposed will prove useful in boundary element modeling of noise propagation in canyon streets and in ducts, and for problems of scattering by periodic surfaces.
Resumo:
We prove Chung-type laws of the iterated logarithm for general Lévy processes at zero. In particular, we provide tools to translate small deviation estimates directly into laws of the iterated logarithm. This reveals laws of the iterated logarithm for Lévy processes at small times in many concrete examples. In some cases, exotic norming functions are derived.
Resumo:
A rheological model of sea ice is presented that incorporates the orientational distribution of ice thickness in leads embedded in isotropic floe ice. Sea ice internal stress is determined by coulombic, ridging and tensile failure at orientations where corresponding failure criteria are satisfied at minimum stresses. Because sea ice traction increases in thinner leads and cohesion is finite, such failure line angles are determined by the orientational distribution of sea ice thickness relative to the imposed stresses. In contrast to the isotropic case, sea ice thickness anisotropy results in these failure lines becoming dependent on the stress magnitude. Although generally a given failure criteria type can be satisfied at many directions, only two at most are considered. The strain rate is determined by shearing along slip lines accompanied by dilatancy and closing or opening across orientations affected by ridging or tensile failure. The rheology is illustrated by a yield curve determined by combining coulombic and ridging failure for the case of two pairs of isotropically formed leads of different thicknesses rotated with regard to each other, which models two events of coulombic failure followed by dilatancy and refreezing. The yield curve consists of linear segments describing coulombic and ridging yield as failure switches from one lead to another as the stress grows. Because sliding along slip lines is accompanied by dilatancy, at typical Arctic sea ice deformation rates a one-day-long deformation event produces enough open water that these freshly formed slip lines are preferential places of ridging failure.
Resumo:
We present a new Bayesian econometric specification for a hypothetical Discrete Choice Experiment (DCE) incorporating respondent ranking information about attribute importance. Our results indicate that a DCE debriefing question that asks respondents to rank the importance of attributes helps to explain the resulting choices. We also examine how mode of survey delivery (online and mail) impacts model performance, finding that results are not substantively a§ected by the mode of survey delivery. We conclude that the ranking data is a complementary source of information about respondent utility functions within hypothetical DCEs
Resumo:
Abnormalities in glucose tolerance such as type 2 diabetes can have demonstrable negative effects on a range of cognitive functions. However, there was no evidence that low GL breakfasts administered acutely could confer benefits for cognitive function (ClincalTrials.gov identifier, NCT01047813).
Resumo:
We consider a generic basic semi-algebraic subset S of the space of generalized functions, that is a set given by (not necessarily countably many) polynomial constraints. We derive necessary and sufficient conditions for an infinite sequence of generalized functions to be realizable on S, namely to be the moment sequence of a finite measure concentrated on S. Our approach combines the classical results about the moment problem on nuclear spaces with the techniques recently developed to treat the moment problem on basic semi-algebraic sets of Rd. In this way, we determine realizability conditions that can be more easily verified than the well-known Haviland type conditions. Our result completely characterizes the support of the realizing measure in terms of its moments. As concrete examples of semi-algebraic sets of generalized functions, we consider the set of all Radon measures and the set of all the measures having bounded Radon–Nikodym density w.r.t. the Lebesgue measure.
Resumo:
There is an on-going debate on the environmental effects of genetically modified crops to which this paper aims to contribute. First, data on environmental impacts of genetically modified (GM) and conventional crops are collected from peer-reviewed journals, and secondly an analysis is conducted in order to examine which crop type is less harmful for the environment. Published data on environmental impacts are measured using an array of indicators, and their analysis requires their normalisation and aggregation. Taking advantage of composite indicators literature, this paper builds composite indicators to measure the impact of GM and conventional crops in three dimensions: (1) non-target key species richness, (2) pesticide use, and (3) aggregated environmental impact. The comparison between the three composite indicators for both crop types allows us to establish not only a ranking to elucidate which crop is more convenient for the environment but the probability that one crop type outperforms the other from an environmental perspective. Results show that GM crops tend to cause lower environmental impacts than conventional crops for the analysed indicators.
Resumo:
We give an a posteriori analysis of a semidiscrete discontinuous Galerkin scheme approximating solutions to a model of multiphase elastodynamics, which involves an energy density depending not only on the strain but also the strain gradient. A key component in the analysis is the reduced relative entropy stability framework developed in Giesselmann (2014, SIAM J. Math. Anal., 46, 3518–3539). This framework allows energy-type arguments to be applied to continuous functions. Since we advocate the use of discontinuous Galerkin methods we make use of two families of reconstructions, one set of discrete reconstructions and a set of elliptic reconstructions to apply the reduced relative entropy framework in this setting.
Resumo:
Purkinje cell degeneration (pcd) mice have a mutation within the gene encoding cytosolic carboxypeptidase 1 (CCP1/Nna1), which has homology to metallocarboxypeptidases. To assess the function of CCP1/Nna1, quantitative proteomics and peptidomics approaches were used to compare proteins and peptides in mutant and wild-type mice. Hundreds of peptides derived from cytosolic and mitochondrial proteins are greatly elevated in pcd mouse hypothalamus, amygdala, cortex, prefrontal cortex, and striatum. However, the major proteins detected on 2-D gel electrophoresis were present in mutant and wild-type mouse cortex and hypothalamus at comparable levels, and proteasome activity is normal in these brain regions of pcd mice, suggesting that the increase in cellular peptide levels in the pcd mice is due to reduced degradation of the peptides downstream of the proteasome. Both nondegenerating and degenerating regions of pcd mouse brain, but not wild-type mouse brain, show elevated autophagy, which can be triggered by a decrease in amino acid levels. Taken together with previous studies on CCP1/Nna1, these data suggest that CCP1/Nna1 plays a role in protein turnover by cleaving proteasome-generated peptides into amino acids and that decreased peptide turnover in the pcd mice leads to cell death.-Berezniuk, I., Sironi, J., Callaway, M. B., Castro, L. M., Hirata, I. Y., Ferro, E. S., Fricker, L. D. CCP1/Nna1 functions in protein turnover in mouse brain: Implications for cell death in Purkinje cell degeneration mice. FASEB J. 24, 1813-1823 (2010). www.fasebj.org
Resumo:
Kazal-type inhibitors play several important roles in invertebrates, such as anticoagulant, vasodilator and antimicrobial activities. Putative Kazal-type inhibitors were described in several insect transcriptomes. In this paper we characterized for the first time a Kazal unique domain trypsin inhibitor from the Aedes aegypti mosquito. Previously, analyses of sialotranscriptome of A. aegypti showed the potential presence of a Kazal-type serine protease inhibitor, in female salivary glands, carcass and also in whole male, which we named AaTI (A. aegypti trypsin inhibitor). AaTI sequence showed amino acid sequence similarity with insect thrombin inhibitors, serine protease inhibitor from Litopenaeus vannamei hemocytes and tryptase inhibitor from leech Hirudo medicinalis (LDTI). In this work we expressed, purified and characterized the recombinant AaTI (rAaTI). Molecular weight of purified rAaTI was 7 kDa rAaTI presented dissociation constant (K(i)) of 0.15 and 3.8 nM toward trypsin and plasmin, respectively, and it weakly inhibited thrombin amidolytic activity. The rAaTI was also able to prolong prothrombin time, activated partial thromboplastin time and thrombin time. AaTI transcription was confirmed in A. aegypti female salivary gland and gut 3 h and 24 h after blood feeding, suggesting that this molecule can act as anticoagulant during the feeding and digestive processes. Its transcription in larvae and pupae suggested that AaTI may also play other functions during the mosquito`s development. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
This paper deals with semi-global C(k)-solvability of complex vector fields of the form L = partial derivative/partial derivative t + x(r) (a(x) + ib(x))partial derivative/partial derivative x, r >= 1, defined on Omega(epsilon) = (-epsilon, epsilon) x S(1), epsilon > 0, where a and b are C(infinity) real-valued functions in (-epsilon, epsilon). It is shown that the interplay between the order of vanishing of the functions a and b at x = 0 influences the C(k)-solvability at Sigma = {0} x S(1). When r = 1, it is permitted that the functions a and b of L depend on the x and t variables, that is, L = partial derivative/partial derivative t + x(a(x, t) + ib(x, t))partial derivative/partial derivative x, where (x, t) is an element of Omega(epsilon).
Resumo:
We study the Gevrey solvability of a class of complex vector fields, defined on Omega(epsilon) = (-epsilon, epsilon) x S(1), given by L = partial derivative/partial derivative t + (a(x) + ib(x))partial derivative/partial derivative x, b not equivalent to 0, near the characteristic set Sigma = {0} x S(1). We show that the interplay between the order of vanishing of the functions a and b at x = 0 plays a role in the Gevrey solvability. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In this series of papers, we study issues related to the synchronization of two coupled chaotic discrete systems arising from secured communication. The first part deals with uniform dissipativeness with respect to parameter variation via the Liapunov direct method. We obtain uniform estimates of the global attractor for a general discrete nonautonomous system, that yields a uniform invariance principle in the autonomous case. The Liapunov function is allowed to have positive derivative along solutions of the system inside a bounded set, and this reduces substantially the difficulty of constructing a Liapunov function for a given system. In particular, we develop an approach that incorporates the classical Lagrange multiplier into the Liapunov function method to naturally extend those Liapunov functions from continuous dynamical system to their discretizations, so that the corresponding uniform dispativeness results are valid when the step size of the discretization is small. Applications to the discretized Lorenz system and the discretization of a time-periodic chaotic system are given to illustrate the general results. We also show how to obtain uniform estimation of attractors for parametrized linear stable systems with nonlinear perturbation.
Resumo:
We consider a four dimensional field theory with target space being CP(N) which constitutes a generalization of the usual Skyrme-Faddeev model defined on CP(1). We show that it possesses an integrable sector presenting an infinite number of local conservation laws, which are associated to the hidden symmetries of the zero curvature representation of the theory in loop space. We construct an infinite class of exact solutions for that integrable submodel where the fields are meromorphic functions of the combinations (x(1) + i x(2)) and (x(3) + x(0)) of the Cartesian coordinates of four dimensional Minkowski space-time. Among those solutions we have static vortices and also vortices with waves traveling along them with the speed of light. The energy per unity of length of the vortices show an interesting and intricate interaction among the vortices and waves.