954 resultados para modèle linaire dynamique
Resumo:
Dans ce texte, nous analysons les développements récents de l’économétrie à la lumière de la théorie des tests statistiques. Nous revoyons d’abord quelques principes fondamentaux de philosophie des sciences et de théorie statistique, en mettant l’accent sur la parcimonie et la falsifiabilité comme critères d’évaluation des modèles, sur le rôle de la théorie des tests comme formalisation du principe de falsification de modèles probabilistes, ainsi que sur la justification logique des notions de base de la théorie des tests (tel le niveau d’un test). Nous montrons ensuite que certaines des méthodes statistiques et économétriques les plus utilisées sont fondamentalement inappropriées pour les problèmes et modèles considérés, tandis que de nombreuses hypothèses, pour lesquelles des procédures de test sont communément proposées, ne sont en fait pas du tout testables. De telles situations conduisent à des problèmes statistiques mal posés. Nous analysons quelques cas particuliers de tels problèmes : (1) la construction d’intervalles de confiance dans le cadre de modèles structurels qui posent des problèmes d’identification; (2) la construction de tests pour des hypothèses non paramétriques, incluant la construction de procédures robustes à l’hétéroscédasticité, à la non-normalité ou à la spécification dynamique. Nous indiquons que ces difficultés proviennent souvent de l’ambition d’affaiblir les conditions de régularité nécessaires à toute analyse statistique ainsi que d’une utilisation inappropriée de résultats de théorie distributionnelle asymptotique. Enfin, nous soulignons l’importance de formuler des hypothèses et modèles testables, et de proposer des techniques économétriques dont les propriétés sont démontrables dans les échantillons finis.
Resumo:
This paper analyzes the dynamics of wages and workers' mobility within firms with a hierarchical structure of job levels. The theoretical model proposed by Gibbons and Waldman (1999), that combines the notions of human capital accumulation, job rank assignments based on comparative advantage and learning about workers' abilities, is implemented empirically to measure the importance of these elements in explaining the wage policy of firms. Survey data from the GSOEP (German Socio-Economic Panel) are used to draw conclusions on the common features characterizing the wage policy of firms from a large sample of firms. The GSOEP survey also provides information on the worker's rank within his firm which is usually not available in other surveys. The results are consistent with non-random selection of workers onto the rungs of a job ladder. There is no direct evidence of learning about workers' unobserved abilities but the analysis reveals that unmeasured ability is an important factor driving wage dynamics. Finally, job rank effects remain significant even after controlling for measured and unmeasured characteristics.
La Politique de Distribution de Dividendes des Societes: Modele Generalise Ou D'ajustement Dynamique
Resumo:
In this article we study the effect of uncertainty on an entrepreneur who must choose the capacity of his business before knowing the demand for his product. The unit profit of operation is known with certainty but there is no flexibility in our one-period framework. We show how the introduction of global uncertainty reduces the investment of the risk neutral entrepreneur and, even more, that the risk averse one. We also show how marginal increases in risk reduce the optimal capacity of both the risk neutral and the risk averse entrepreneur, without any restriction on the concave utility function and with limited restrictions on the definition of a mean preserving spread. These general results are explained by the fact that the newsboy has a piecewise-linear, and concave, monetary payoff witha kink endogenously determined at the level of optimal capacity. Our results are compared with those in the two literatures on price uncertainty and demand uncertainty, and particularly, with the recent contributions of Eeckhoudt, Gollier and Schlesinger (1991, 1995).
Resumo:
À l’aide d’un modèle de cycles réels, la présente étude vise à expliquer, de façon endogène, les fluctuations des termes de l’échange en Côte-d’Ivoire. Pour ce faire, nous cherchons principalement à répondre aux deux questions suivantes : les chocs d’offre et de demande sur le marché d’exportation suffisent-ils à expliquer les variations des termes de l’échange? Et quelle est leur importance relative dans la dynamique des termes de l’échange? Les résultats montrent que les deux chocs considérés expliquent bien la volatilité des termes de l’échange. Nous avons noté que ces deux sources d’impulsions ont un impact significatif sur les fluctuations économiques en Côte-d’Ivoire.
Resumo:
This paper extends the Competitive Storage Model by incorporating prominent features of the production process and financial markets. A major limitation of this basic model is that it cannot successfully explain the degree of serial correlation observed in actual data. The proposed extensions build on the observation that in order to generate a high degree of price persistence, a model must incorporate features such that agents are willing to hold stocks more often than predicted by the basic model. We therefore allow unique characteristics of the production and trading mechanisms to provide the required incentives. Specifically, the proposed models introduce (i) gestation lags in production with heteroskedastic supply shocks, (ii) multiperiod forward contracts, and (iii) a convenience return to inventory holding. The rational expectations solutions for twelve commodities are numerically solved. Simulations are then employed to assess the effects of the above extensions on the time series properties of commodity prices. Results indicate that each of the features above partially account for the persistence and occasional spikes observed in actual data. Evidence is presented that the precautionary demand for stocks might play a substantial role in the dynamics of commodity prices.
Resumo:
We characterize the solution to a model of consumption smoothing using financing under non-commitment and savings. We show that, under certain conditions, these two different instruments complement each other perfectly. If the rate of time preference is equal to the interest rate on savings, perfect smoothing can be achieved in finite time. We also show that, when random revenues are generated by periodic investments in capital through a concave production function, the level of smoothing achieved through financial contracts can influence the productive investment efficiency. As long as financial contracts cannot achieve perfect smoothing, productive investment will be used as a complementary smoothing device.
Resumo:
We reconsider the discrete version of the axiomatic cost-sharing model. We propose a condition of (informational) coherence requiring that not all informational refinements of a given problem be solved differently from the original problem. We prove that strictly coherent linear cost-sharing rules must be simple random-order rules.
Resumo:
We examine the relationship between the risk premium on the S&P 500 index return and its conditional variance. We use the SMEGARCH - Semiparametric-Mean EGARCH - model in which the conditional variance process is EGARCH while the conditional mean is an arbitrary function of the conditional variance. For monthly S&P 500 excess returns, the relationship between the two moments that we uncover is nonlinear and nonmonotonic. Moreover, we find considerable persistence in the conditional variance as well as a leverage effect, as documented by others. Moreover, the shape of these relationships seems to be relatively stable over time.
Resumo:
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.
Resumo:
This paper derives the ARMA representation of integrated and realized variances when the spot variance depends linearly on two autoregressive factors, i.e., SR SARV(2) models. This class of processes includes affine, GARCH diffusion, CEV models, as well as the eigenfunction stochastic volatility and the positive Ornstein-Uhlenbeck models. We also study the leverage effect case, the relationship between weak GARCH representation of returns and the ARMA representation of realized variances. Finally, various empirical implications of these ARMA representations are considered. We find that it is possible that some parameters of the ARMA representation are negative. Hence, the positiveness of the expected values of integrated or realized variances is not guaranteed. We also find that for some frequencies of observations, the continuous time model parameters may be weakly or not identified through the ARMA representation of realized variances.
Resumo:
In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.
Resumo:
We study the problem of testing the error distribution in a multivariate linear regression (MLR) model. The tests are functions of appropriately standardized multivariate least squares residuals whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their expected value under the hypothesized distribution. Special cases considered include testing multivariate normal, Student t; normal mixtures and stable error models. In the Gaussian case, finite-sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution families involving nuisance parameters, confidence sets are derived for the the nuisance parameters and the error distribution. The procedures considered are evaluated in a small simulation experi-ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.
Resumo:
We propose methods for testing hypotheses of non-causality at various horizons, as defined in Dufour and Renault (1998, Econometrica). We study in detail the case of VAR models and we propose linear methods based on running vector autoregressions at different horizons. While the hypotheses considered are nonlinear, the proposed methods only require linear regression techniques as well as standard Gaussian asymptotic distributional theory. Bootstrap procedures are also considered. For the case of integrated processes, we propose extended regression methods that avoid nonstandard asymptotics. The methods are applied to a VAR model of the U.S. economy.
Resumo:
This paper studies the transition between exchange rate regimes using a Markov chain model with time-varying transition probabilities. The probabilities are parameterized as nonlinear functions of variables suggested by the currency crisis and optimal currency area literature. Results using annual data indicate that inflation, and to a lesser extent, output growth and trade openness help explain the exchange rate regime transition dynamics.