624 resultados para Spiral gingers
Resumo:
A novel method for functional lung imaging was introduced by adapting the K-edge subtraction method (KES) to in vivo studies of small animals. In this method two synchrotron radiation energies, which bracket the K-edge of the contrast agent, are used for simultaneous recording of absorption-contrast images. Stable xenon gas is used as the contrast agent, and imaging is performed in projection or computed tomography (CT) mode. Subtraction of the two images yields the distribution of xenon, while removing practically all features due to other structures, and the xenon density can be calculated quantitatively. Because the images are recorded simultaneously, there are no movement artifacts in the subtraction image. Time resolution for a series of CT images is one image/s, which allows functional studies. Voxel size is 0.1mm3, which is an order better than in traditional lung imaging methods. KES imaging technique was used in studies of ventilation distribution and the effects of histamine-induced airway narrowing in healthy, mechanically ventilated, and anaesthetized rabbits. First, the effect of tidal volume on ventilation was studied, and the results show that an increase in tidal volume without an increase in minute ventilation results a proportional increase in regional ventilation. Second, spiral CT was used to quantify the airspace volumes in lungs in normal conditions and after histamine aerosol inhalation, and the results showed large patchy filling defects in peripheral lungs following histamine provocation. Third, the kinetics of proximal and distal airway response to histamine aerosol were examined, and the findings show that the distal airways react immediately to histamine and start to recover, while the reaction and the recovery in proximal airways is slower. Fourth, the fractal dimensions of lungs was studied, and it was found that the fractal dimension is higher at the apical part of the lungs compared to the basal part, indicating structural differences between apical and basal lung level. These results provide new insights to lung function and the effects of drug challenge studies. Nowadays the technique is available at synchrotron radiation facilities, but the compact synchrotron radiation sources are being developed, and in relatively near future the method may be used at hospitals.
Resumo:
A modified density matrix renormalization group (DMRG) algorithm is applied to the zigzag spin-1/2 chain with frustrated antiferromagnetic exchange J(1) and J(2) between first and second neighbors. The modified algorithm yields accurate results up to J(2)/J(1) approximate to 4 for the magnetic gap Delta to the lowest triplet state, the amplitude B of the bond order wave phase, the wavelength lambda of the spiral phase, and the spin correlation length xi. The J(2)/J(1) dependences of Delta, B, lambda, and xi provide multiple comparisons to field theories of the zigzag chain. The twist angle of the spiral phase and the spin structure factor yield additional comparisons between DMRG and field theory. Attention is given to the numerical accuracy required to obtain exponentially small gaps or exponentially long correlations near a quantum phase transition.
Resumo:
The conformational characteristics of disulfide bridges in proteins have been analyzed using a dataset of 22 protein structures, available at a resolution of 2.0 Å, containing a total of 72 disulfide crosslinks. The parameters used in the analysis include (φ, Ψ) values at Cys residues, bridge dihedral angles χss, χ1i, χ1j, χ2i and χ2j the distances Cαi-Cαj and Cβi-Cβj between the Cα and Cβ atoms of Cys(i) and Cys(j). Eight families of bridge conformations with three or more occurrences have been identified on the basis of these stereochemical parameters. The most populated family corresponds to the "left handed spiral" identified earlier by Richardson ((1981) Adv. Protein Chem. 34, 167–330). Disulfide bridging across antiparallel extended strands is observed in α-lytic protease, crambin, and β-trypsin and this structure is shown to be very similar to those obtained in small cystine peptides. Solvent accessible surface area calculations show that the overwhelming majority of disulfide bridges are inaccessible to solvent.
Resumo:
Stress-strain characteristics of concrete confined in steel binders have been determined. A new factor “confinement index” has been introduced for a quantitative measure of the confinement and using these results a “stress-block” has been developed. Tests have been made on simply supported reinforced concrete beams with spiral binder confinement and analysed on the basis of the proposed stress-block. Tests have also been made oon reinforced concrete portal frames and continuous beams with spiral binder confinement at sections of possible plastic hinge formation. An analysis of these tests indicates that a full redistribution of moments has taken place at ultimate.
Resumo:
The modern food system and sustainable development form a conceptual combination that suggests sustainability deficits in environmental impacts and nutritional status of western populations. This study explores actors orientations towards sustainability by probing into social dynamics for sustainability within primary production and public consumption. If actors within these two worlds were to express converging orientations for sustainability, the system dynamics of the market would enable more sustainable growth in terms of production dictated by consumption. The study is based on a constructivist research approach with qualitative text analyses. The findings were validated by internal and external food system actors and are suggested to represent current social dynamics within Finnish food system. The key findings included primary producers social skilfulness, which enabled networking with other actors in very different paths of life, learning in order to promote one s trade, and trusting reflectively in partners in order to expand business. These activities extended the supply chain in a spiral fashion by horizontal and vertical forward integration, until large retailers were met for negotiations on a more equal basis. This mode of chain level coordination, typically building around the core of social and partnership relations, was coined as a socially overlaid network, and seen as sustainable coordination mode for endogenous growth. The caterers exhibited more or less committed professional identity for sustainability within their reach. The facilitating approaches for professional identities dealt successfully with local and organic food in addition to domestic food, and also imported food. The co-operation with supply chains created innovative solutions and savings for the business parties to be shared. There were also more complicated identities as juggling, critical and delimited approaches for sustainability, with less productive efforts due to restrictions such as absence of organisational sustainability strategy, weak presence of local and organic suppliers, limited understanding about sustainability and no organisational resources for informed choices for sustainability. The convergence between producers and caterers existed to an extent allowing suggestion that increased clarity about sustainable consumption and production by actors could be constructed using advanced tools. The study looks for introduction of more profound environmental and socio-economic knowledge through participatory research with supply chain actors. Learning in the workplace about food system reality in terms of supply chain co-operation may prove to be a change engine that leads to advanced network operations and a more sustainable food system.
Resumo:
Abstract The modern food system and sustainable development form a conceptual combination that suggests sustainability deficits in the ways we deal with food consumption and production - in terms of economic relations, environmental impacts and nutritional status of western population. This study explores actors’ orientations towards sustainability by taking into account actors’ embedded positions within structures of the food system, actors’ economic relations and views about sustainability as well as their possibilities for progressive activities. The study looks particularly at social dynamics for sustainability within primary production and public consumption. If actors within these two worlds were to express converging orientations for sustainability, the system dynamics of the market would enable more sustainable growth in terms of production dictated by consumption. The study is based on a constructivist research approach with qualitative text analyses. The data consisted of three text corpora, the ‘local food corpus’, the ‘catering corpus’ and the ‘mixed corpus’. The local food actors were interviewed about their economic exchange relations. The caterers’ interviews dealt with their professional identity for sustainability. Finally, the mixed corpus assembled a dialogue as a participatory research approach, which was applied in order to enable researcher and caterer learning about the use of organic milk in public catering. The data were analysed for theoretically conceptualised relations, expressing behavioural patterns in actors’ everyday work as interpreted by the researcher. The findings were corroborated by the internal and external communities of food system actors. The interpretations have some validity, although they only present abstractions of everyday life and its rich, even opaque, fabric of meanings and aims. The key findings included primary producers’ social skilfulness, which enabled networking with other actors in very different paths of life, learning in order to promote one’s trade, and trusting reflectively in partners in order to extend business. These activities expanded the supply chain in a spiral fashion by horizontal and vertical forward integration, until large retailers were met for negotiations on a more equal or ‘other regarding’ basis. This kind of chain level coordination, typically building around the core of social and partnership relations, was coined as a socially overlaid network. It supported market access of local farmers, rooted in their farms, who were able to draw on local capital and labour in promotion of competitive business; the growth was endogenous. These kinds of chains – one conventional and one organic – were different from the strategic chain, which was more profit based and while highly competitive, presented exogenous growth as it depended on imported capital and local employees. However, the strategic chain offered learning opportunities and support for the local economy. The caterers exhibited more or less committed professional identity for sustainability within their reach. The facilitating and balanced approaches for professional identities dealt successfully with local and organic food in addition to domestic food, and also imported food. The co-operation with supply chains created innovative solutions and savings for the business parties to be shared. The rule-abiding approach for sustainability only made choices among organic supply chains without extending into co-operation with actors. There were also more complicated and troubled identities as juggling, critical and delimited approaches for sustainability, with less productive efforts due to restrictions such as absence of organisational sustainability strategy, weak presence of local and organic suppliers, limited understanding about sustainability and no organisational resources to develop changes towards a sustainable food system. Learning in the workplace about food system reality in terms of supply chain co-operation may prove to be a change engine that leads to advanced network operations and a more sustainable food system. The convergence between primary producers and caterers existed to an extent allowing suggestion that increased clarity about sustainable consumption and production by actors could be approached using advanced tools. The study looks for introduction of more profound environmental and socio-economic knowledge through participatory research with supply chain actors in order to promote more sustainable food systems. Summary of original publications and the authors’ contribution I Mikkola, M. & Seppänen, L. 2006. Farmers’ new participation in food chains: making horizontal and vertical progress by networking. In: Langeveld, H. & Röling N. (Eds.). Changing European farming systems for a better future. New visions for rural areas. Wageningen, The Netherlands. Wageningen Academic Publishers: 267–271. II Mikkola, M. 2008. Coordinative structures and development of food supply chains. British Food Journal 110 (2): 189–205. III Mikkola, M. 2009. Shaping professional identity for sustainability. Evidence in Finnish public catering. Appetite 53 (1): 56–65. IV Mikkola, M. 2009. Catering for sustainability: building a dialogue on organic milk. Agronomy Research 7 (Special issue 2): 668–676. Minna Mikkola has been responsible for developing the generic research frame, particular research questions, the planning and collection of the data, their qualitative analysis and writing the articles I, II, III and IV. Dr Laura Seppänen has contributed to the development of the generic research frame and article I by introducing the author to the basic concepts of economic sociology and by supporting the writing of article II with her critical comments. Articles are printed with permission from the publishers.
Resumo:
Boc-Trp-Ile-Ala-Aib-Ile-Val-Aib-Leu-Aib- Pro-Ala-Aib-Pro-Aib-Pro-Phe-OM(we here Boc is t-butoxycarbonyla nd Aib is a-aminoisobutyriac cid), a synthetica polar analog of the membrane-activefu ngal peptide antibioticz ervamtycinII A, crystallizesi n spaceg roupP 1 withZ =1 and cell parameters a = 9.086 ?0.002 A, b = 10.410 ?+ 0.002 A, c = 28.188 ? 0.004 A, a = 86.13 ? 0.01?, 13 = 87.90 ? 0.01?, and y = 89.27 ? 0.01?;o veralla greementf actorR = 7.3% for 7180 data (Fo > 3cr) and 0.91-A resolution. The peptide backbone makes a continuous spiral that begins as a 310-helix at the N-terminus, changes to an a-helix for two turns, and ends in a spiral of three fl-bends in a ribbon. Each of the fl-bends contains a proline residue at one of the corners. The torsion angles 4i range from -51? to -91? (average value -64o), and the torsion angles ai range from -1? to -46? (average value -31?). There are 10 intramolecularN H...OCh ydrogenb onds in the helix and two directh ead-to-taihl ydrogenb ondsb etween successive molecules. Two H20 and two CH30H solvent molecules fill additional space with appropriate hydrogen bonding in the head-to-tail region, and two additional H20 molecules form hydrogen bonds with carbonyl oxygens near the curve in the helix at Pro-10. Since there is only one peptide molecule per cell in space group P1, the molecules repeat only by translation, and consequently the helices pack parallel to each other.
Resumo:
We propose a physical mechanism to explain the origin of the intense burst of massive-star formation seen in colliding/merging, gas-rich, field spiral galaxies. We explicitly take account of the different parameters for the two main mass components, H-2 and H I, of the interstellar medium within a galaxy and follow their consequent different evolution during a collision between two galaxies. We also note that, in a typical spiral galaxy-like our galaxy, the Giant Molecular Clouds (GMCs) are in a near-virial equilibrium and form the current sites of massive-star formation, but have a low star formation rate. We show that this star formation rate is increased following a collision between galaxies. During a typical collision between two field spiral galaxies, the H I clouds from the two galaxies undergo collisions at a relative velocity of approximately 300 km s-1. However, the GMCs, with their smaller volume filling factor, do not collide. The collisions among the H I clouds from the two galaxies lead to the formation of a hot, ionized, high-pressure remnant gas. The over-pressure due to this hot gas causes a radiative shock compression of the outer layers of a preexisting GMC in the overlapping wedge region. This makes these layers gravitationally unstable, thus triggering a burst of massive-star formation in the initially barely stable GMCs.The resulting value of the typical IR luminosity from the young, massive stars from a pair of colliding galaxies is estimated to be approximately 2 x 10(11) L., in agreement with the observed values. In our model, the massive-star formation occurs in situ in the overlapping regions of a pair of colliding galaxies. We can thus explain the origin of enhanced star formation over an extended, central area approximately several kiloparsecs in size, as seen in typical colliding galaxies, and also the origin of starbursts in extranuclear regions of disk overlap as seen in Arp 299 (NGC 3690/IC 694) and in Arp 244 (NGC 4038/39). Whether the IR emission from the central region or that from the surrounding extranuclear galactic disk dominates depends on the geometry and the epoch of the collision and on the initial radial gas distribution in the two galaxies. In general, the central starburst would be stronger than that in the disks, due to the higher preexisting gas densities in the central region. The burst of star formation is expected to last over a galactic gas disk crossing time approximately 4 x 10(7) yr. We can also explain the simultaneous existence of nearly normal CO galaxy luminosities and shocked H-2 gas, as seen in colliding field galaxies.This is a minimal model, in that the only necessary condition for it to work is that there should be a sufficient overlap between the spatial gas distributions of the colliding galaxy pair.
Resumo:
We discuss the results of an extensive mean-field investigation of the half-filled Hubbard model on a triangular lattice at zero temperature. At intermediate U we find a first-order metal-insulator transition from an incommensurate spiral magnetic metal to a semiconducting state with a commensurate linear spin density wave ordering stabilized by the competition between the kinetic energy and the frustrated nature of the magnetic interaction. At large U the ground state is that of a classical triangular antiferromagnet within our approximation. In the incommensurate spiral metallic phase the Fermi surface has parts in which the wave function renormalization Z is extremely small. The evolution of the Fermi surface and the broadening of the quasi-particle band along with the variation of the plasma frequency and a charge stiffness constant with U/t are discussed.
Resumo:
In rapid parallel magnetic resonance imaging, the problem of image reconstruction is challenging. Here, a novel image reconstruction technique for data acquired along any general trajectory in neural network framework, called ``Composite Reconstruction And Unaliasing using Neural Networks'' (CRAUNN), is proposed. CRAUNN is based on the observation that the nature of aliasing remains unchanged whether the undersampled acquisition contains only low frequencies or includes high frequencies too. Here, the transformation needed to reconstruct the alias-free image from the aliased coil images is learnt, using acquisitions consisting of densely sampled low frequencies. Neural networks are made use of as machine learning tools to learn the transformation, in order to obtain the desired alias-free image for actual acquisitions containing sparsely sampled low as well as high frequencies. CRAUNN operates in the image domain and does not require explicit coil sensitivity estimation. It is also independent of the sampling trajectory used, and could be applied to arbitrary trajectories as well. As a pilot trial, the technique is first applied to Cartesian trajectory-sampled data. Experiments performed using radial and spiral trajectories on real and synthetic data, illustrate the performance of the method. The reconstruction errors depend on the acceleration factor as well as the sampling trajectory. It is found that higher acceleration factors can be obtained when radial trajectories are used. Comparisons against existing techniques are presented. CRAUNN has been found to perform on par with the state-of-the-art techniques. Acceleration factors of up to 4, 6 and 4 are achieved in Cartesian, radial and spiral cases, respectively. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Usher syndrome (USH) is an inherited blindness and deafness disorder with variable vestibular dysfunction. The syndrome is divided into three subtypes according to the progression and severity of clinical symptoms. The gene mutated in Usher syndrome type 3 (USH3), clarin 1 (CLRN1), was identified in Finland in 2001 and two mutations were identified in Finnish patients at that time. Prior to this thesis study, the two CLRN1 gene mutations were the only USH mutations identified in Finnish USH patients. To further clarify the Finnish USH mutation spectrum, all nine USH genes were studied. Seven mutations were identified: one was a previously known mutation in CLRN1, four were novel mutations in myosin VIIa (MYO7A) and two were a novel and a previously known mutation in usherin (USH2A). Another aim of this thesis research was to further study the structure and function of the CLRN1 gene, and to clarify the effects of mutations on protein function. The search for new splice variants resulted in the identification of eight novel splice variants in addition to the three splice variants that were already known prior to this study. Studies of the possible promoter regions for these splice variants showed the most active region included the 1000 bases upstream of the translation start site in the first exon of the main three exon splice variant. The 232 aa CLRN1 protein encoded by the main (three-exon) splice variant was transported to the plasma membrane when expressed in cultured cells. Western blot studies suggested that CLRN1 forms dimers and multimers. The CLRN1 mutant proteins studied were retained in the endoplasmic reticulum (ER) and some of the USH3 mutations caused CLRN1 to be unstable. During this study, two novel CLRN1 sequence alterations were identified and their pathogenicity was studied with cell culture protein expression. Previous studies with mice had shown that Clrn1 is expressed in mouse cochlear hair cells and spiral ganglion cells, but the expression profile in mouse retina remained unknown. The Clrn1 knockout mice display cochlear cell disruption/death, but do not have a retinal phenotype. The zebrafish, Danio rerio, clrn1 was found to be expressed in hair cells associated with hearing and balance. Clrn1 expression was also found in the inner nuclear layer (INL), photoreceptor layer and retinal pigment epithelium layer (RPE) of the zebrafish retina. When Clrn1 production was knocked down with injected morpholino oligonucleotides (MO) targeting Clrn1 translation or correct splicing, the zebrafish larvae showed symptoms similar to USH3 patients. These larvae had balance/hearing problems and reduced response to visual stimuli. The knowledge this thesis research has provided about the mutations in USH genes and the Finnish USH mutation spectrum are important in USH patient diagnostics. The extended information about the structure and function of CLRN1 is a step further in exploring USH3 pathogenesis caused by mutated CLRN1 as well as a step in finding a cure for the disease.
Resumo:
We obtain metal-insulator phase diagrams at half-filling for the five-band extended Hubbard model of the square-planar CuO2 lattice treated within a Hartree-Fock mean-field approximation, allowing for spiral spin-density waves. We indicate the existence of an insulating phase (covalent insulator) characterized by strong covalency effects, not identified in the earlier Zaanen-Sawatzky-Allen phase diagram. While the insulating phase is always antiferromagnetic, we also obtain an antiferromagnetic metallic phase for a certain range of interaction parameters. Performing a nonperturbative calculation of J(eff), the in-plane antiferromagnetic interaction is presented as a function of the parameters in the model. We also calculate the band gap and magnetic moments at various sites and discuss critically the contrasting interpretation of the electronic structure of high-T(c) materials arising from photoemission and neutron-scattering experiments.
Resumo:
From a find to an ancient costume - reconstruction of archaeological textiles Costume tells who we are. It warms and protects us, but also tells about our identity: gender, age, family, social group, work, religion and ethnicity. Textile fabrication, use and trade have been an important part of human civilization for more than 10 000 years. There are plenty of archaeological textile findings, but they are small, fragmentary and their interpretation requires special skills. Finnish textile findings from the younger Iron Age have already been studied for more than hundred years. They have also been used as a base for several reconstructions called muinaispuku , ancient costume. Thesis surveys the ancient costume reconstruction done in Finland and discusses the objectives of the reconstruction projects. The earlier reconstruction projects are seen as a part of the national project of constructing a glorious past for Finnish nationality, and the part women took in this project. Many earlier reconstructions are designed to be festive costumes for wealthy ladies. In the 1980s and 1990s many new ancient costume reconstructions were made, differing from their predecessors at the pattern of the skirt. They were also done following the principles of making a scientific reconstruction more closely. At the same time historical re-enactment and living history as a hobby have raised in popularity, and the use of ancient costumes is widening from festive occasions to re-enactment purposes. A hypothesis of the textile craft methods used in younger Iron Age Finland is introduced. Archaeological findings from Finland and neighboring countries, ethnological knowledge of textile crafts and experimental archaeology have been used as a basis for this proposition. The yarn was spinned with a spindle, the fabrics woven on a warp-weighted loom and dyed with natural colors. Bronze spiral applications and complicated tablet-woven bands have possibly been done by specialist craftswomen or -men. The knowledge of the techniques and results of experimenting and experimental archaeology gives a possibility to review the success of existing ancient costume reconstructions as scientific reconstructions. Only one costume reconstruction project, the Kaarina costume fabricated in Kurala Kylämäki museum, has been done using as authentic methods as possible. The use of ancient craft methods is time-consuming and expensive. This fact can be seen as one research result itself for it demonstrates how valuable the ancient textiles have been also in their time of use. In the costume reconstruction work, the skill of a craftswoman and her knowledge of ancient working methods is strongly underlined. Textile research is seen as a process, where examination of original textiles and reconstruction experiments discuss with each other. Reconstruction projects can give a lot both to the research of Finnish younger Iron Age and the popularization of archaeological knowledge. The reconstruction is never finished, and also the earlier reconstructions should be reviewed in the light of new findings.
Resumo:
The method of characteristics coupled with a log-spiral failure surface was used to develop a theory for vertical uplift capacity of shallow horizontal strip anchors in a general c-phi soil. Uplift-capacity factors F(c), F(q) and F(gamma), for the effects of cohesion, surcharge, and density, respectively, have been established as functions of embedment ratio lambda and angle of friction phi. The extent of the failure surface at the ground has also been determined. Comparisons made with existing test results support the predictive capability of the theory, and comparisons with the analysis proposed by Meyerhof and Adams show the proposed analysis provides slightly more conservative predictions of pullout capacity.
Resumo:
Cardiac arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov) model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study.