903 resultados para Quantitative Genetic-variation
Resumo:
INTRODUCTION Although the high heritability of BMD variation has long been established, few genes have been conclusively shown to affect the variation of BMD in the general population. Extreme truncate selection has been proposed as a more powerful alternative to unselected cohort designs in quantitative trait association studies. We sought to test these theoretical predictions in studies of the bone densitometry measures BMD, BMC, and femoral neck area, by investigating their association with members of the Wnt pathway, some of which have previously been shown to be associated with BMD in much larger cohorts, in a moderate-sized extreme truncate selected cohort (absolute value BMD Z-scores = 1.5-4.0; n = 344). MATERIALS AND METHODS Ninety-six tag-single nucleotide polymorphism (SNPs) lying in 13 Wnt signaling pathway genes were selected to tag common genetic variation (minor allele frequency [MAF] > 5% with an r(2) > 0.8) within 5 kb of all exons of 13 Wnt signaling pathway genes. The genes studied included LRP1, LRP5, LRP6, Wnt3a, Wnt7b, Wnt10b, SFRP1, SFRP2, DKK1, DKK2, FZD7, WISP3, and SOST. Three hundred forty-four cases with either high or low BMD were genotyped by Illumina Goldengate microarray SNP genotyping methods. Association was tested either by Cochrane-Armitage test for dichotomous variables or by linear regression for quantitative traits. RESULTS Strong association was shown with LRP5, polymorphisms of which have previously been shown to influence total hip BMD (minimum p = 0.0006). In addition, polymorphisms of the Wnt antagonist, SFRP1, were significantly associated with BMD and BMC (minimum p = 0.00042). Previously reported associations of LRP1, LRP6, and SOST with BMD were confirmed. Two other Wnt pathway genes, Wnt3a and DKK2, also showed nominal association with BMD. CONCLUSIONS This study shows that polymorphisms of multiple members of the Wnt pathway are associated with BMD variation. Furthermore, this study shows in a practical trial that study designs involving extreme truncate selection and moderate sample sizes can robustly identify genes of relevant effect sizes involved in BMD variation in the general population. This has implications for the design of future genome-wide studies of quantitative bone phenotypes relevant to osteoporosis.
Resumo:
Objectives. Strong genetic association of rheumatoid arthritis (RA) with PADI4 (peptidyl arginine deiminase) has previously been described in Japanese, although this was not confirmed in a subsequent study in the UK. We therefore undertook a further study of genetic association between PADI4 and RA in UK Caucasians and also studied expression of PADI4 in the peripheral blood of patients with RA. Methods. Seven single-nucleotide polymorphisms (SNP) were genotyped using polymerase chain reaction (PCR)-restriction fragment length polymorphism in 111 RA cases and controls. A marker significantly associated with RA (PADI4_100, rs#2240339) in this first data set (P = 0.03) was then tested for association in a larger group of 439 RA patients and 428 controls. PADI4 transcription was also assessed by real-time quantitative PCR using RNA extracted from peripheral blood mononuclear cells from 13 RA patients and 11 healthy controls. Results. A single SNP was weakly associated with RA (P = 0.03) in the initial case-control study, a single SNP (PADI4_100) and a two marker haplotype of that SNP and the neighbouring SNP (PADI4_04) were significantly associated with RA (P = 0.02 and P = 0.03 respectively). PADI4_100 was not associated with RA in a second sample set. PADI4 expression was four times greater in cases than controls (P = 0.004), but expression levels did not correlate with the levels of markers of inflammation. Conclusion. PADI4 is significantly overexpressed in the blood of RA patients but genetic variation within PADI4 is not a major risk factor for RA in Caucasians.
Resumo:
The Juvenile Wood Initiative (JWI) project has been running successfully since July 2003 under a Research Agreement with FWPA and Letters of Association with the consortium partners STBA (Southern Tree Breeding Association), ArborGen and FPQ (Forestry Plantations Queensland). Over the last five and half years, JWI scientists in CSIRO, FPQ, and STBA have completed all 12 major milestones and 28 component milestones according to the project schedule. We have made benchmark progress in understanding the genetic control of wood formation and interrelationships among wood traits. The project has made 15 primary scientific findings and several results have been adopted by industry as summarized below. This progress was detailed in 10 technical reports to funding organizations and industry clients. Team scientists produced 16 scientific manuscripts (8 published, 1 in press, 2 submitted, and several others in the process of submission) and 15 conference papers or presentations. Primary Scientific Findings. The 15 major scientific findings related to wood science, inheritance and the genetic basis of juvenile wood traits are: 1. An optimal method to predict stiffness of standing trees in slash/Caribbean pine is to combine gravimetric basic density from 12 mm increment cores with a standing tree prediction of MoE using a time of flight acoustic tool. This was the most accurate and cheapest way to rank trees for breeding selection for slash/Caribbean hybrid pine. This method was also recommended for radiata pine. 2. Wood density breeding values were predicted for the first time in the STBA breeding population using a large sample of 7,078 trees (increment cores) and it was estimated that selection of the best 250 trees for deployment will produce wood density gains of 12.4%. 3. Large genetic variation for a suite of wood quality traits including density, MFA, spiral grain, shrinkage, acoustic and non-acoustic stiffness (MoE) for clear wood and standing trees were observed. Genetic gains of between 8 and 49% were predicted for these wood quality traits with selection intensity between 1 to 10% for radiata pine. 4. Site had a major effect on juvenile-mature wood transition age and the effect of selective breeding for a shorter juvenile wood formation phase was only moderate (about 10% genetic gain with 10% selection intensity, equivalent to about 2 years reduction of juvenile wood). 5. The study found no usable site by genotype interactions for the wood quality traits of density, MFA and MoE for both radiata and slash/Caribbean pines, suggesting that assessment of wood properties on one or two sites will provide reliable estimates of the genetic worth of individuals for use in future breeding. 6. There were significant and sizable genotype by environment interactions between the mainland and Tasmanian regions and within Tasmania for DBH and branch size. 7. Strong genetic correlations between rings for density, MFA and MoE for both radiata and slash/Caribbean pines were observed. This suggests that selection for improved wood properties in the innermost rings would also result in improvement of wood properties in the subsequent rings, as well as improved average performance of the entire core. 8. Strong genetic correlations between pure species and hybrid performance for each of the wood quality traits were observed in the hybrid pines. Parental performance can be used to identify the hybrid families which are most likely to have superior juvenile wood properties of the slash/Caribbean F1 hybrid in southeast Queensland. 9. Large unfavourable genetic correlations between growth and wood quality traits were a prominent feature in radiata pine, indicating that overcoming this unfavourable genetic correlation will be a major technical issue in progressing radiata pine breeding. 10. The project created the first radiata pine 18 k cDNA microarray and generated 5,952 radiata pine xylogenesis expressed sequence tags (ESTs) which assembled into 3,304 unigenes. 11. A total of 348 genes were identified as preferentially expressed genes in earlywood or latewood while a total of 168 genes were identified as preferentially expressed genes in either juvenile or mature wood. 12. Juvenile earlywood has a distinct transcriptome relative to other stages of wood development. 13. Discovered rapid decay of linkage disequilibrium (LD) in radiata pine with LD decaying to approximately 50% within 1,700 base pairs (within a typical gene). A total of 913 SNPS from sequencing 177,380 base pairs were identified for association genetic studies. 14. 149 SNPs from 44 genes and 255 SNPs from a further 51 genes (total 95 genes) were selected for association analysis with 62 wood traits, and 30 SNPs were shortlisted for their significant association with variation of wood quality traits (density, MFA and MoE) with individual significant SNPs accounting for between 1.9 and 9.7% of the total genetic variation in traits. 15. Index selection using breeding objectives was the most profitable selection method for radiata pine, but in the long term it may not be the most effective in dealing with negative genetic correlations between wood volume and quality traits. A combination of economic and biological approaches may be needed to deal with the strong adverse correlation.
Resumo:
Metabolites are small molecules involved in cellular metabolism, which can be detected in biological samples using metabolomic techniques. Here we present the results of genome-wide association and meta-analyses for variation in the blood serum levels of 129 metabolites as measured by the Biocrates metabolomic platform. In a discovery sample of 7,478 individuals of European descent, we find 4,068 genome- and metabolome-wide significant (Z-test, P<1.09 × 10−9) associations between single-nucleotide polymorphisms (SNPs) and metabolites, involving 59 independent SNPs and 85 metabolites. Five of the fifty-nine independent SNPs are new for serum metabolite levels, and were followed-up for replication in an independent sample (N=1,182). The novel SNPs are located in or near genes encoding metabolite transporter proteins or enzymes (SLC22A16, ARG1, AGPS and ACSL1) that have demonstrated biomedical or pharmaceutical importance. The further characterization of genetic influences on metabolic phenotypes is important for progress in biological and medical research.
Resumo:
Pharmacogenetics deals with genetically determined variation in drug response. In this context, three phase I drug-metabolizing enzymes, CYP2D6, CYP2C9, and CYP2C19, have a central role, affecting the metabolism of about 20-30% of clinically used drugs. Since genes coding for these enzymes in human populations exhibit high genetic polymorphism, they are of major pharmacogenetic importance. The aims of this study were to develop new genotyping methods for CYP2D6, CYP2C9, and CYP2C19 that would cover the most important genetic variants altering the enzyme activity, and, for the first time, to describe the distribution of genetic variation at these loci on global and microgeographic scales. In addition, pharmacogenetics was applied to a postmortem forensic setting to elucidate the role of genetic variation in drug intoxications, focusing mainly on cases related to tricyclic antidepressants, which are commonly involved in fatal drug poisonings in Finland. Genetic variability data were obtained by genotyping new population samples by the methods developed based on PCR and multiplex single-nucleotide primer extension reaction, as well as by collecting data from the literature. Data consisted of 138, 129, and 146 population samples for CYP2D6, CYP2C9, and CYP2C19, respectively. In addition, over 200 postmortem forensic cases were examined with respect to drug and metabolite concentrations and genotypic variation at CYP2D6 and CYP2C19. The distribution of genetic variation within and among human populations was analyzed by descriptive statistics and variance analysis and by correlating the genetic and geographic distances using Mantel tests and spatial autocorrelation. The correlation between phenotypic and genotypic variation in drug metabolism observed in postmortem cases was also analyzed statistically. The genotyping methods developed proved to be informative, technically feasible, and cost-effective. Detailed molecular analysis of CYP2D6 genetic variation in a global survey of human populations revealed that the pattern of variation was similar to those of neutral genomic markers. Most of the CYP2D6 diversity was observed within populations, and the spatial pattern of variation was best described as clinal. On the other hand, genetic variants of CYP2D6, CYP2C9, and CYP2C19 associated with altered enzymatic activity could reach extremely high frequencies in certain geographic regions. Pharmacogenetic variation may also be significantly affected by population-specific demographic histories, as seen within the Finnish population. When pharmacogenetics was applied to a postmortem forensic setting, a correlation between amitriptyline metabolic ratios and genetic variation at CYP2D6 and CYP2C19 was observed in the sample material, even in the presence of confounding factors typical for these cases. In addition, a case of doxepin-related fatal poisoning was shown to be associated with a genetic defect at CYP2D6. Each of the genes studied showed a distinct variation pattern in human populations and high frequencies of altered activity variants, which may reflect the neutral evolution and/or selective pressures caused by dietary or environmental exposure. The results are relevant also from the clinical point of view since the genetic variation at CYP2D6, CYP2C9, and CYP2C19 already has a range of clinical applications, e.g. in cancer treatment and oral anticoagulation therapy. This study revealed that pharmacogenetics may also contribute valuable information to the medicolegal investigation of sudden, unexpected deaths.
Resumo:
Abnormal expansion or depletion of particular lymphocyte subsets is associated with clinical manifestations such as HIV progression to AIDS and autoimmune disease. We sought to identify genetic predictors of lymphocyte levels and reasoned that these may play a role in immune-related diseases. We tested 2.3 million variants for association with five lymphocyte subsets, measured in 2538 individuals from the general population, including CD4+ T cells, CD8+ T cells, CD56+ natural killer (NK) cells, and the derived measure CD4:CD8 ratio. We identified two regions of strong association. The first was located in the major histocompatibility complex (MHC), with multiple SNPs strongly associated with CD4:CD8 ratio (rs2524054, p = 2.1 × 10−28). The second region was centered within a cluster of genes from the Schlafen family and was associated with NK cell levels (rs1838149, p = 6.1 × 10−14). The MHC association with CD4:CD8 replicated convincingly (p = 1.4 × 10−9) in an independent panel of 988 individuals. Conditional analyses indicate that there are two major independent quantitative trait loci (QTL) in the MHC region that regulate CD4:CD8 ratio: one is located in the class I cluster and influences CD8 levels, whereas the second is located in the class II cluster and regulates CD4 levels. Jointly, both QTL explained 8% of the variance in CD4:CD8 ratio. The class I variants are also strongly associated with durable host control of HIV, and class II variants are associated with type-1 diabetes, suggesting that genetic variation at the MHC may predispose one to immune-related diseases partly through disregulation of T cell homeostasis.
Resumo:
Olfaction, the sense of smell, has many important functions in humans. Human responses to odors show substantial individual variation. Olfactory receptor genes have been identified and other genes may also influence olfaction. However, the proportion of phenotypic variation in odor response due to genetic variation remains largely unknown. Little is also known about which genes modify specific responses to odors. This study aimed to elucidate genetic and environmental influences on human responses to odors. Individuals from Finnish families (n=146) and Australian (n=413), British (n=163), Danish (n=336), and Finnish (n=399) twins rated intensity and pleasantness of a set of 12 (families) or 6 (twins) odors and tried to identify the odors. In addition, the participants rated their own sense of smell and annoyance experienced with different environmental odors. The odor stimuli of a commercial smell test (The Brief Smell Identification Test; banana, chocolate, cinnamon, gasoline, lemon, onion, paint thinner, pineapple, rose, smoke, soap, and turpentine) were presented in the family study. Based on the results of the family study and a literature survey, a new set of odor stimuli (androstenone, chocolate, cinnamon, isovaleric acid, lemon, and turpentine) was designed for the twin studies. In the family sample, heritabilities of the traits were estimated and underlying genomic regions were searched using a genome-wide linkage scan. In the pooled twin sample, variation in the measured traits was decomposed into genetic and environmental components using quantitative genetic modeling. In addition, associations between nongenetic factors (e.g., sex, age, and smoking) and olfactory-related traits were explored. Suggestive evidence for a genetic linkage for pleasantness of cinnamon at a locus on chromosome 4q32.3 emerged from the family sample. High heritability for the pleasantness of cinnamon was found in the family but not the twin study. Heritability of perceived intensity of androstenone odor was determined to be ~30% in the twin sample. A strong genetic correlation between perceived intensity and pleasantness of androstenone, in the absence of any environmental correlation, indicated that only the genetic correlation explained the phenotypic correlation between the traits (r=-0.27) and that the traits were influenced by an overlapping set of genes. Self-rated olfactory function appeared to reflect the odor annoyance experienced rather than actual olfactory acuity or genetic involvement. Results from nongenetic analyses supported the speculated superiority of females' olfactory abilities, the age-related diminishing of olfactory acuity, and the influences of experience-dependent factors on odor responses. This was the first study to estimate heritabilities and perform linkage screens for individual odors. A genetic effect was detected for only a few responses to specific odors, suggesting the predominance of environmental effects in odor perceptions.
Resumo:
Associating genetic variation with quantitative measures of gene regulation offers a way to bridge the gap between genotype and complex phenotypes. In order to identify quantitative trait loci (QTLs) that influence the binding of a transcription factor in humans, we measured binding of the multifunctional transcription and chromatin factor CTCF in 51 HapMap cell lines. We identified thousands of QTLs in which genotype differences were associated with differences in CTCF binding strength, hundreds of them confirmed by directly observable allele-specific binding bias. The majority of QTLs were either within 1 kb of the CTCF binding motif, or in linkage disequilibrium with a variant within 1 kb of the motif. On the X chromosome we observed three classes of binding sites: a minority class bound only to the active copy of the X chromosome, the majority class bound to both the active and inactive X, and a small set of female-specific CTCF sites associated with two non-coding RNA genes. In sum, our data reveal extensive genetic effects on CTCF binding, both direct and indirect, and identify a diversity of patterns of CTCF binding on the X chromosome.
Resumo:
If a novel, resistant host-plant genotype arises in the environment, insect populations utilising that host must be able to overcome that resistance in order that they can maintain their ability to feed on that host. The ability to evolve resistance to host-plant defences depends upon additive genetic variation in larval performance and adult host-choice preference. To investigate the potential of a generalist herbivore to respond to a novel resistant host, we estimated the heritability of larval performance in the noctuid moth, Helicoverpa armigera, on a resistant and a susceptible variety of the chickpea, Cicer arietinum, at two different life stages. Heritability estimates were higher for neonates than for third-instar larvae, suggesting that their ability to establish on plants could be key to the evolution of resistance in this species; however, further information regarding the nature of selection in the field would be required to confirm this prediction. There was no genetic correlation between larval performance and oviposition preference, indicating that female moths do not choose the most suitable plant for their offspring. We also found significant genotype by environment interactions for neonates (but not third-instar larvae), suggesting that the larval response to different plant genotypes is stage-specific in this species.
Resumo:
Theory predicts that natural selection will erode additive genetic variation in fitness-related traits. However, numerous studies have found considerable heritable variation in traits related to immune function, which should be closely linked to fitness. This could be due to trade-offs maintaining variation in these traits. We used the Egyptian cotton leafworm, Spodoptera littoralis, as a model system to examine the quantitative genetics of insect immune function. We estimated the heritabilities of several different measures of innate immunity and the genetic correlations between these immune traits and a number of life history traits. Our results provide the first evidence for a potential genetic trade-off within the insect immune system, with antibacterial activity (lysozyme-like) exhibiting a significant negative genetic correlation with haemocyte density, which itself is positively genetically correlated with both haemolymph phenoloxidase activity and cuticular melanization. We speculate on a potential trade-off between defence against parasites and predators, mediated by larval colour, and its role in maintaining genetic variation in traits under natural selection.
Resumo:
Genetics plays a crucial role in human aging with up to 30% of those living to the mid-80s being determined by genetic variation. Survival to older ages likely entails an even greater genetic contribution. There is increasing evidence that genes implicated in age-related diseases, such as cancer and neuronal disease, play a role in affecting human life span. We have selected the 10 most promising late-onset Alzheimer's disease (LOAD) susceptibility genes identified through several recent large genome-wide association studies (GWAS). These 10 LOAD genes (APOE, CLU, PICALM, CR1, BIN1, ABCA7, MS4A6A, CD33, CD2AP, and EPHA1) have been tested for association with human aging in our dataset (1385 samples with documented age at death [AAD], age range: 58-108 years; mean age at death: 80.2) using the most significant single nucleotide polymorphisms (SNPs) found in the previous studies. Apart from the APOE locus (rs2075650) which showed compelling evidence of association with risk on human life span (p = 5.27 × 10(-4)), none of the other LOAD gene loci demonstrated significant evidence of association. In addition to examining the known LOAD genes, we carried out analyses using age at death as a quantitative trait. No genome-wide significant SNPs were discovered. Increasing sample size and statistical power will be imperative to detect genuine aging-associated variants in the future. In this report, we also discuss issues relating to the analysis of genome-wide association studies data from different centers and the bioinformatic approach required to distinguish spurious genome-wide significant signals from real SNP associations.
Resumo:
Nicastrin (NCSTN) is a component of the ?-secretase complex and therefore potentially a candidate risk gene for Alzheimer's disease. Here, we have developed a novel functional genomics methodology to express common locus haplotypes to assess functional differences. DNA recombination was used to engineer 5 bacterial artificial chromosomes (BACs) to each express a different haplotype of the NCSTN locus. Each NCSTN-BAC was delivered to knockout nicastrin (Ncstn(-/-)) cells and clonal NCSTN-BAC(+)/Ncstn(-/-) cell lines were created for functional analyses. We showed that all NCSTN-BAC haplotypes expressed nicastrin protein and rescued ?-secretase activity and amyloid beta (Aß) production in NCSTN-BAC(+)/Ncstn(-/-) lines. We then showed that genetic variation at the NCSTN locus affected alternative splicing in human postmortem brain tissue. However, there was no robust functional difference between clonal cell lines rescued by each of the 5 different haplotypes. Finally, there was no statistically significant association of NCSTN with disease risk in the 4 cohorts. We therefore conclude that it is unlikely that common variation at the NCSTN locus is a risk factor for Alzheimer's disease.
Resumo:
Rice (Oryza sativa) cultivar Azucena--belonging to the Japonica subspecies--exudes high strigolactone (SL) levels and induces high germination of the root parasitic plant Striga hermonthica. Consistent with the fact that SLs also inhibit shoot branching, Azucena is a low-tillering variety. In contrast, Bala, an Indica cultivar, is a low-SL producer, stimulates less Striga germination, and is highly tillered. Using a Bala × Azucena F6 population, a major quantitative trait loci--qSLB1.1--for the exudation of SL, tillering, and induction of Striga germination was detected on chromosome 1. Sequence analysis of the corresponding locus revealed a rearrangement of a 51- to 59-kbp stretch between 28.9 and 29 Mbp in the Bala genome, resulting in the deletion of two cytochrome P450 genes--SLB1 and SLB2--with high homology to the Arabidopsis SL biosynthesis gene, MAX1. Both rice genes rescue the Arabidopsis max1-1 highly branched mutant phenotype and increase the production of the SL, ent-2'-epi-5-deoxystrigol, when overexpressed in Bala. Furthermore, analysis of this region in 367 cultivars of the publicly available Rice Diversity Panel population shows that the rearrangement at this locus is a recurrent natural trait associated with the Indica/Japonica divide in rice.
Resumo:
Farmed fish are typically genetically different from wild conspecifics. Escapees from fish farms may contribute one-way gene flow from farm to wild gene pools, which can depress population productivity, dilute local adaptations and disrupt coadapted gene complexes. Here, we reanalyse data from two experiments (McGinnity et al., 1997, 2003) where performance of Atlantic salmon (Salmo salar) progeny originating from experimental crosses between farm and wild parents (in three different cohorts) were measured in a natural stream under common garden conditions. Previous published analyses focussed on group-level differences but did not account for pedigree structure, as we do here using modern mixed-effect models. Offspring with one or two farm parents exhibited poorer survival in their first and second year of life compared with those with two wild parents and these group-level inferences were robust to excluding outlier families. Variation in performance among farm, hybrid and wild families was generally similar in magnitude. Farm offspring were generally larger at all life stages examined than wild offspring, but the differences were moderate (5–20%) and similar in magnitude in the wild versus hatchery environments. Quantitative genetic analyses conducted using a Bayesian framework revealed moderate heritability in juvenile fork length and mass and positive genetic correlations (>0.85) between these morphological traits. Our study confirms (using more rigorous statistical techniques) previous studies showing that offspring of wild fish invariably have higher fitness and contributes fresh insights into family-level variation in performance of farm, wild and hybrid Atlantic salmon families in the wild. It also adds to a small, but growing, number of studies that estimate key evolutionary parameters in wild salmonid populations. Such information is vital in modelling the impacts of introgression by escaped farm salmon.
Resumo:
Indirect and direct models of sexual selection make different predictions regarding the quantitative genetic relationships between sexual ornaments and fitness. Indirect models predict that ornaments should have a high heritability and that strong positive genetic covariance should exist between fitness and the ornament. Direct models, on the other hand, make no such assumptions about the level of genetic variance in fitness and the ornament, and are therefore likely to be more important when environmental sources of variation are large. Here we test these predictions in a wild population of the blue tit (Parus caeruleus), a species in which plumage coloration has been shown to be under sexual selection. Using 3 years of cross-fostering data from over 250 breeding attempts, we partition the covariance between parental coloration and aspects of nestling fitness into a genetic and environmental component. Contrary to indirect models of sexual selection, but in agreement with direct models, we show that variation in coloration is only weakly heritable (h(2) < 0.11), and that two components of offspring fitness-nestling size and fledgling recruitment-are strongly dependent on parental effects, rather than genetic effects. Furthermore, there was no evidence of significant positive genetic covariation between parental colour and offspring traits. Contrary to direct benefit models, however, we find little evidence that variation in colour reliably indicates the level of parental care provided by either males or females. Taken together, these results indicate that the assumptions of indirect models of sexual selection are not supported by the genetic basis of the traits reported on here.