Genome-wide association study identifies novel genetic variants contributing to variation in blood metabolite levels


Autoria(s): Draisma, H.H.M.; Pool, R.; Kobl, M.; Jansen, R.; Petersen, A.-K.; Vaarhorst, A.A.M.; Yet, I.; Haller, T.; Demirkan, A.; Esko, T.; Zhu, G.; Böhringer, S.; Beekman, M.; Van Klinken, J.B.; Römisch-Margl, W.; Prehn, C.; Adamski, J.; De Craen, A.J.M.; Van Leeuwen, E.M.; Amin, N.; Dharuri, H.; Westra, H.-J.; Franke, L.; De Geus, E.J.C.; Hottenga, J.J.; Willemsen, G.; Henders, A.K.; Montgomery, G.W.; Nyholt, D.R.; Whitfield, J.B.; Penninx, B.W.; Spector, T.D.; Metspalu, A.; Eline Slagboom, P.; Van Dijk, K.W.; 'T Hoen, P.A.C.; Strauch, K.; Martin, N.G.; Van Ommen, G.-J.B.; Illig, T.; Bell, J.T.; Mangino, M.; Suhre, K.; McCarthy, M.I.; Gieger, C.; Isaacs, A.; Van Duijn, C.M.; Boomsma, D.I.
Data(s)

2015

Resumo

Metabolites are small molecules involved in cellular metabolism, which can be detected in biological samples using metabolomic techniques. Here we present the results of genome-wide association and meta-analyses for variation in the blood serum levels of 129 metabolites as measured by the Biocrates metabolomic platform. In a discovery sample of 7,478 individuals of European descent, we find 4,068 genome- and metabolome-wide significant (Z-test, P<1.09 × 10−9) associations between single-nucleotide polymorphisms (SNPs) and metabolites, involving 59 independent SNPs and 85 metabolites. Five of the fifty-nine independent SNPs are new for serum metabolite levels, and were followed-up for replication in an independent sample (N=1,182). The novel SNPs are located in or near genes encoding metabolite transporter proteins or enzymes (SLC22A16, ARG1, AGPS and ACSL1) that have demonstrated biomedical or pharmaceutical importance. The further characterization of genetic influences on metabolic phenotypes is important for progress in biological and medical research.

Formato

application/pdf

application/pdf

application/pdf

Identificador

http://eprints.qut.edu.au/91742/

Publicador

Nature Publishing Group

Relação

http://eprints.qut.edu.au/91742/1/2015-04-18_45498_1_attach_12_16187.pdf

http://eprints.qut.edu.au/91742/2/SupplementaryInformation.pdf

http://eprints.qut.edu.au/91742/3/Figures1-3.pdf

DOI:10.1038/ncomms8208

Draisma, H.H.M., Pool, R., Kobl, M., Jansen, R., Petersen, A.-K., Vaarhorst, A.A.M., Yet, I., Haller, T., Demirkan, A., Esko, T., Zhu, G., Böhringer, S., Beekman, M., Van Klinken, J.B., Römisch-Margl, W., Prehn, C., Adamski, J., De Craen, A.J.M., Van Leeuwen, E.M., Amin, N., Dharuri, H., Westra, H.-J., Franke, L., De Geus, E.J.C., Hottenga, J.J., Willemsen, G., Henders, A.K., Montgomery, G.W., Nyholt, D.R., Whitfield, J.B., Penninx, B.W., Spector, T.D., Metspalu, A., Eline Slagboom, P., Van Dijk, K.W., 'T Hoen, P.A.C., Strauch, K., Martin, N.G., Van Ommen, G.-J.B., Illig, T., Bell, J.T., Mangino, M., Suhre, K., McCarthy, M.I., Gieger, C., Isaacs, A., Van Duijn, C.M., & Boomsma, D.I. (2015) Genome-wide association study identifies novel genetic variants contributing to variation in blood metabolite levels. Nature Communications, 6(7208).

Direitos

Copyright 2015 Macmillan Publishers Limited

Fonte

School of Biomedical Sciences; Faculty of Health; Institute of Health and Biomedical Innovation

Palavras-Chave #amino acid #biomarker #concentration (composition) #drug #enzyme #gene expression #genetic analysis #genetic variation #genome #identification method #metabolism #metabolite #mutation #phenotype #serum #ACSL1 gene #AGPS gene #ARG1 gene #Article #blood level #European #gene #genetic association #genetic variability #human #metabolite #metabolome #metabolomics #phenotype #single nucleotide polymorphism #SLC22A16 gene
Tipo

Journal Article