914 resultados para Pulsed double clad fiber amplifier


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel microcavity semiconductor optical amplifier ( MCSOA) was proposed by incorporating top and bottom distributed Bragg reflectors ( DBRs) into the waveguide structure of conventional traveling-wave semiconductor optical amplifiers(TW-SOAs). The incoming( outgoing) light beam incidented onto (escaped from) the waveguide structure at a oblique angle through two optical windows, where the top DBR was etched away, and anti-reflection coating was deposited. The light beams inside the optical cavity were reflected repeatedly between two DBRs and propagated along waveguide in a zigzag optical path. The performance of the MCSOA was systematically investigated by extensive numerical simulation based on a traveling-wave model by taking into account the comprehensive effects of DBRs on both the amplification of signals and the filtering of spontaneous emission( SE). Our results show that the MCSOA is capable of achieving a fiber-to-fiber gain as high as 40dB and a low noise figure is less than 3.5dB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pulsed InGaAsP-Si hybrid laser is fabricated using metal bonding. A novel structure in which the optical coupling and metal bonding areas are transversely separated is employed to integrate the silicon waveguide with an InGaAsP multi-quantum well distributed feedback structure. When electrically pumped at room temperature, the laser operates with a threshold current density of 2.9 kA/cm(2) and a slope efficiency of 0.02 W/A. The 1542 nm laser output exits mainly from the Si waveguide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel fiber Bragg grating (FBG) pressure sensor based on the double shell cylinder with temperature compensation is presented. in the sensing scheme, a sensing FBG is affixed in the tangential direction on the outer surface of the inner cylinder, and another FBG is affixed in the axial direction to compensate the temperature fluctuation. Based on the theory of elasticity, the theoretical analysis of the strain distribution of the sensing shell is presented. Experiments are carried out to test the performance of the sensor. A pressure sensitivity of 0.0937 nm/MPa has been achieved. The experimental results also demonstrate that the two FBGs have the same temperature sensitivity, which can be utilized to compensate the temperature induced wavelength shift during the pressure measurement. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel wideband polarization-insensitive semiconductor optical amplifier (SOA) gate containing compressively strained InGaAs quantum wells and tensile-strained InGaAs quasi-bulk layers is developed. The fabricated SOA gates have a wide 3-dB optical bandwidth of 102 nm, less than 0.8-dB polarization sensitivity, more than 50-dB extinction ratio, and less than 75-mA fiber-to-fiber lossless operating current. (C) 2004 Society of Photo-Optical Instrumentation Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have demonstrated an electroabsorption modulator and semiconductor optical amplifier monolithically integrated with novel dual-waveguide spot-size converters (SSC) at the input and output ports for low-loss coupling to a planar light-guide circuit silica waveguide or cleaved single-mode optical fibre. The device was fabricated by means of selective-area MOVPE growth, quantum well intermixing and asymmetric twin waveguide technologies with only a three-step low-pressure MOVPE growth. For the device structure, in the SOA/EAM section, a double ridge structure was employed to reduce the EAM capacitances and enable high bit-rate operation. In the SSC sections, buried ridge structure (BRS) was incorporated. Such a combination of ridge, ATG and BRS structure is reported for the first time in which it can take advantage of easy processing of the ridge structure and the excellent mode characteristic of BRS. At the wavelength range of 1550-1600 nm, lossless operation with extinction ratios of 25 dB dc and more than 10 GHz 3 dB bandwidth is successfully achieved, The beam divergence angles of the input and output ports of the device are as small as 8.0 degrees x 12.6 degrees, resulting in 3.0 dB coupling loss with a cleaved single-mode optical fibre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semiconductor optical amplifier and electroabsorption modulator monolithically integrated with dual-waveguide spot-size converters at the input and output ports is demonstrated by means of selective area growth, quantum-well intermixing, and asymmetric twin waveguide technologies. At the wavelength range of 1550 similar to 1600 nm, lossless operation with extinction ratios of 25-dB dc and 11.8-dB radio frequency and more than 10-GHz 3-dB modulation bandwidth is successfully achieved. The output beam divergence angles of the device in the horizontal and vertical directions are as small as 7.3 degrees x 10.6 degrees, respectively, resulting in 3.0-dB coupling loss with cleaved single-mode optical fiber.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel semiconductor optical amplifier (SOA) optical gate with a graded strained bulk-like active structure is proposed. A fiber-to-fiber gain of 10 dB when the coupling loss reaches 7 dB/factet and a polarization insensitivity of less than 0.9 dB for multiwavelength and different power input signals over the whole operation current are obtained. Moreover, for our SOA optical gate, a no-loss current of 50 to 70 mA and an extinction ratio of more than 50 dB are realized when the injection current is more than no-loss current, and the maximum extinction ratio reaches 71 dB, which is critical for crosstalk suppression. (C) 2003 society of Photo-Optical Instrumentation Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An X-ray diffraction method, estimating the strain relaxation in an ultrathin layer, has been discussed by using kinematic and dynamical X-ray diffraction (XRD) theory. The characteristic parameter Delta Omega, used as the criterion of the strain relaxation in ultrathin layers, is deduced theoretically. It reveals that Delta Omega should be independent of the layer thickness in a coherently strained layer. By this method, we characterized our ultrathin GaNxAs1-x samples with N contents up to 5%. XRD measurements show that our GaNxAs1-x layers are coherently strained on GaAs even for such a large amount of N. Furthermore, a series of GaNxAs1-x samples with same N contents but different layer thicknesses were also characterized. It was found that the critical thickness (L-c) of GaNAs in the GaAs/GaNAs/GaAs structures determined by XRD measurement was 10 times smaller than the theoretical predictions based on the Matthews and Blakeslee model. This result was also confirmed by in situ observation of reflection high-energy electron diffraction (RHEED) and photoluminescence (PL) measurements. RHEED observation showed that the growth mode of GaNAs layer changed from 2D- to 3D-mode as the layer thickness exceeded L-c. PL measurements showed that the optical properties of GaNAs layers deteriorated rapidly as the layer thickness exceeded L-c. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of new single-step methods and their corresponding algorithms with automatic step size adjustment for model equations of fiber Raman amplifiers are proposed and compared in this paper. On the basis of the Newton-Raphson method, multiple shooting algorithms for the two-point boundary value problems involved in solving Raman amplifier propagation equations are constructed. A verified example shows that, compared with the traditional Runge-Kutta methods, the proposed methods can increase the accuracy by more than two orders of magnitude under the same conditions. The simulations for Raman amplifier propagation equations demonstrate that our methods can increase the computing speed by more than 5 times, extend the step size significantly, and improve the stability in comparison with the Dormand-Prince method. The numerical results show that the combination of the multiple shooting algorithms and the proposed methods has the capacity to rapidly and effectively solve the model equations of multipump Raman amplifiers under various conditions such as co-, counter- and bi-directionally pumped schemes, as well as dual-order pumped schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a home-made seed at 1053 nm from a Yb3+-doped passively mode-locked fiber laser of 1.5 nJ/pulse, 362 ps pulse duration with a repetition rate of 3.842 MHz, a compact, low cost, stable and excellent beam quality non-collinear chirped pulse optical parametric amplifier omitting the bulky pulse stretcher has been demonstrated. A gain higher than 4.0 x 10(6), single pulse energy exceeding 6 mJ with fluctuations less than 2% rms, 14 nm amplified signal spectrum and recompressed pulse duration of 525 fs are achieved. This provides a novel and simple amplification scheme. (c) 2007 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 40-GHz wavelength tunable mode-locked fiber ring laser based oil cross-gain modulation in a semiconductor optical amplifier (SOA) is presented. Pulse trains with a pulse width of 10.5 ps at 40-GHz repetition frequency are obtained. The laser operates with almost 40-nm tuning range. The relationship between the key laser parameters and the output pulse characteristics is analyzed experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An actively mode-locked fiber ring laser based on cross-gain modulation (XGM) in a semiconductor optical amplifier (SOA) is demonstrated to operate stably with a simple configuration. By forward injecting an easily-generated external pulse train, the mode-locked fiber laser can generate an optical-pulse sequence with pulsewidth about 6 ps and average output power about 7.9 mW. The output pulses show an ultra-low RMS jitter about 70.7 fs measured by a RF spectrum analyzer. The use of the proposed forward-injection configuration can realize the repetition-rate tunability from I to 15 GHz for the generated optical-pulse sequences. By employing a wavelength-tunable optical band-pass filter in the laser cavity, the operation wavelength of the designed SOA-based actively mode-locked fiber laser can be tuned continuously in a wide span between 1528 and 1565 nm. The parameters of external-injection optical pulses are studied experimentally to optimize the mode-locked fiber laser. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lasing in an end-pumped gain guided index-antiguided (GG-IAG) Yb3+-doped silicate glass fiber with a 200 mu m diameter core is demonstrated. Laser beams with similar beam propagation factors M (2) and mode field diameters W (0) (> 160 mu m) were observed at the output end of the GG-IAG fibers under different pump powers, which indicated that single mode behavior and excellent beam quality were achieved during propagation. Furthermore, the laser amplifier characteristics in the present Yb3+-doped GG-IAG fiber were also evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertical cavity surface emitting lasers operating in the 1.3- and 1.5-mu m wavelength ranges are highly attractive for telecommunications applications. However, they are far less well-developed than devices operating at shorter wavelengths. Pulsed electrically-injected lasing at 1.5 mu m, at temperatures up to 240 K, is demonstrated in a vertical-cavity surface-emitting laser with one epitaxial and one dielectric reflector. This is an encouraging result in the development of practical sources for optical fiber communications systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large area multi-finger configuration power SiGe HBT device(with an emitter area of about 880μm~2)was fabricated with 2μm double-mesa technology.The maximum DC current gain β is 214.The BV_(CEO) is up to 10V,and the BV_(CBO) is up to 16V with a collector doping concentration of 1×10~(17)cm~(-3) and collector thickness of 400nm.The device exhibits a maximum oscillation frequency f_(max) of 19.3GHz and a cut-off frequency f_T of 18.0GHz at a DC bias point of I_C=30mA and V_(CE)=3V.MSG(maximum stable gain)is 24.5dB,and U(Mason unilateral gain)is 26.6dB at 1GHz.Due to the novel distribution layout,no notable current gain fall-off or thermal effects are observed in the I-V characteristics at high collector current.