950 resultados para Positronen-Emission-Tomography (PET)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Der Folsäure-basierte Radiotracer Etarfolatide (99mTc-EC 20) hat in der Vergangenheit sehr vielversprechende Ergebnisse im Bereich der frühzeitigen Diagnostik von Ovarialkarzinomen gezeigt. Einzelphotonen-Emissionscomputertomographie (SPECT) erlaubt dabei eine Visualisierung der Krankheit in einem sehr frühen Stadium – ermöglicht wird dies durch Folsäure, welche als Target Vektor dient. Um das erfolgreiche Prinzip der Radiofolate auf die Positronen-Emissionstomographie (PET) zu übertragen, welche eine noch höhere räumliche Auflösung ermöglicht, wurden in den letzten fünf Jahren bereits 18F-folate entwickelt. Deren hepatobiliären Exkretionsmuster, verursacht durch die relativ hohe Lipophilie der Strukturen, entsprachen jedoch nicht den Anforderungen. Eine optimierte Bioverteilung der Tracer in vivo kann durch eine generelle Erhöhung der Polarität erfolgen. Die Kombination aus einem polaren 68Ga-Komplex mit Folsäure als Target Vektor stellte den Fokus dieses Projektes dar. Ziel war die Entwicklung eines Radiofolates mit der Tendenz einer raschen renalen Ausscheidung und verringerter hepatobiliärer Anreicherung. Dazu wurde Folsäure regiospezifisch über ihre y-Säure an verschiedene bifunktionelle Chelatoren (BFCs) gekoppelt. Vier verschiedene Reaktionstypen wurden gewählt und durchgeführt: Cu-katalysierte sowie Cu-freie Click Reaktion, Amindbindung und Thioharnstoff Bildung. Es wurden sechs verschiedene Derivate erhalten und mit 68Ga radiomarkiert.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many children with sarcomas undergo whole body 2-deoxy-2-((18)F)fluoro-D-glucose positron emission tomography/computed tomography ((18)F-FDG PET/CT) and technetium methylene diphosphonate ((99)Tc-MDP) studies. It is unknown whether the combination of both tests results in more accurate detection of bone lesions than (18)F-FDG- PET/CT alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monoclonal antibody anti-CD66 labeled with (99m)Tc is widely used as Scintimun((R)) granulocyte for bone marrow immunoscintigraphy. Further, recently performed clinical radioimmunotherapy studies with [(90)Y]Y-anti-CD66 proved to be suitable for the treatment of hematologic malignancies. Before radioimmunotherapy with [(90)Y]Y-anti-CD66, dosimetric estimations are required to minimize radiotoxicity and determine individual applicable activities. Planar imaging, using gamma-emitting radionuclides, is conventionally carried out to estimate the absorbed organ doses. In contrast, immuno-PET (positron emission tomography) enables the quantification of anti-CD66 accumulation and provides better spatial and temporal resolution. Therefore, in this study, a semiautomated radiosynthesis of [(18)F] F-anti-CD66 was developed, using the (18)F-acylation agent, N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB). As a proof of concept, an intraindividual comparison between PET and conventional scintigraphy, using (18)F- and (99m)Tc-labeled anti-CD66 in 1 patient with high-risk leukemia, is presented. Both labeled antibodies displayed a similar distribution pattern with high preferential uptake in bone marrow. Urinary excretion of [(18)F] F-anti-CD66 was increased and bone marrow uptake reduced, in comparison to [(99m)Tc]Tc-anti-CD66. Nevertheless, PET-based dosimetry with [(18)F] F-anti-CD66 could provide additional information to support conventional scintigraphy. Moreover, [(18)F]F-anti-CD66 is ideally suited for bone marrow imaging using PET.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: [(18)F]fluoro-deoxyglucose positron-emission-tomography (FDG-PET) detects metabolic activity in alveolar echinococcosis (AE). The slow changes in metabolic and morphological characteristics require long-term follow-up of patients. This is the first study to evaluate metabolic activity over may years, hereby assessing the utility of FDG-PET for the evaluation of disease progression and response to treatment. PATIENTS, METHODS: 15 patients received a follow-up FDG-PET combined with computed tomography (integrated PET/CT) with a median of 6.5 years after the first PET in 1999. Number and location of enhanced metabolic activity in the area of AE lesions was determined. Quantification of intensity of metabolic activity was assessed by calculation of mean standardized uptake values. RESULTS: AE lesions in 11/15 patients had been metabolically inactive initially, but only two showed permanent inactivity over the course of 81 months. Interestingly, in two patients metabolic activity was newly detected after 80 and 82 months. Benzimidazole treatment was intermittently discontinued in seven cases. Persisting activity at FDG-PET demanded continued benzimidazole treatment in four patients. Neither treatment duration, lesional size, calcifications nor regressive changes correlated with metabolic activity. CONCLUSION: Treatment responses are heterogeneous and vary from progressive disease despite treatment to long-term inactive disease with discontinued treatment. Lack of metabolic activity indicates suppressed parasite activity and is not equivalent to parasite death. However, metabolic activity may remain suppressed for years, allowing for temporary treatment discontinuation. Relapses are reliably detected with PET and restarting benzimidazole treatment prevents parasite expansion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with chronic pain disorders often show somatosensory disturbances that are considered to be functional. This paper aims at a more precise clinical description and at a documentation of functional neuroimaging correlates of this phenomenon. We examined 30 consecutive patients with unilaterally accentuated chronic pain not explained by persistent peripheral tissue damage and ipsilateral somatosensory disturbances including upper and lower extremities and trunk. The patients were assessed clinically and with conventional brain CT or MRI scan. In the last 11 patients functional neuroimaging was carried out (18-fluordeoxyglucose positron emission tomography=FDG-PET). Depressive symptoms were assessed with the Hamilton depression scale (HAMD-17) and pain intensity was rated with a visual analogue scale for pain (VAS). All patients suffered from mild to moderate depressive symptoms. All patients had experienced a prolonged antecedent phase of severe emotional distress; most of them remembered a "trigger episode of somatic pain" on the affected side. Somatosensory deficits were a replicable hyposensitivity to touch and heat perception of nondermatomal distribution. Conventional imaging procedures (brain CT or MRI scans) showed no structural changes. However, in 11 patients functional imaging with FDG-PET showed a significant hypometabolic pattern of changes in cortical and subcortical areas, mainly in the post-central gyrus, posterior insula, putamen, and anterior cingulate cortex. In summary, pain-related nondermatomal somatosensory deficits (NDSDs) are a phenomenon involving biological as well as psychosocial factors with replicable neuroperceptive clinical findings and a complex neurodysfunctional pattern in the FDG-PET.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Positron emission tomography-computed tomography (PET-CT) has gained widespread acceptance as a staging investigation in the diagnostic workup of malignant tumours and may be used to visualize metabolic changes before the evolution of morphological changes. To make histology of PET findings without distinctive structural changes available for treatment decisions, we developed a protocol for multimodal image-guided interventions using an integrated PET-CT machine. We report our first experience in 12 patients admitted for staging and restaging of breast cancer, non-small cell lung cancer, cervical cancer, soft tissue sarcoma, and osteosarcoma. Patients were repositioned according to the findings in PET-CT and intervention was planned based on a subsequent single-bed PET-CT acquisition of the region concerned. The needle was introduced under CT guidance in a step-by-step technique and correct needle position in the centre of the FDG avid lesion was assured by repetition of a single-bed PET-CT acquisition before sampling. The metabolically active part of lesions was accurately targeted in all patients and representative samples were obtained in 92%. No major adverse effects occurred. We conclude that PET-CT guidance for interventions is feasible and may be promising to optimize the diagnostic yield of CT-guided interventions and to make metabolically active lesions without morphological correlate accessible to percutaneous interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Only responding patients benefit from preoperative therapy for locally advanced esophageal carcinoma. Early detection of non-responders may avoid futile treatment and delayed surgery. PATIENTS AND METHODS: In a multi-center phase ll trial, patients with resectable, locally advanced esophageal carcinoma were treated with 2 cycles of induction chemotherapy followed by chemoradiotherapy (CRT) and surgery. Positron emission tomography with 2[fluorine-18]fluoro-2-deoxy-d-glucose (FDG-PET) was performed at baseline and after induction chemotherapy. The metabolic response was correlated with tumor regression grade (TRG). A decrease in FDG tumor uptake of less than 40% was prospectively hypothesized as a predictor for histopathological non-response (TRG > 2) after CRT. RESULTS: 45 patients were included. The median decrease in FDG tumor uptake after chemotherapy correlated well with TRG after completion of CRT (p = 0.021). For an individual patient, less than 40% decrease in FDG tumor uptake after induction chemotherapy predicted histopathological non-response after completion of CRT, with a sensitivity of 68% and a specificity of 52% (positive predictive value 58%, negative predictive value 63%). CONCLUSIONS: Metabolic response correlated with histopathology after preoperative therapy. However, FDG-PET did not predict non-response after induction chemotherapy with sufficient clinical accuracy to justify withdrawal of subsequent CRT and selection of patients to proceed directly to surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introducción: La utilización de regímenes de tratamiento más individualizados requiere de mejores sistemas de estratificación temprana en Linfoma Hodgkin (LH). El estudio Tomografía por Emisión de Positrones utilizando 2-[18F] fluoro-2-deoxi-Dglucosa (FDG-PET) intra-tratamiento podría jugar un rol muy importante en esta evaluación. Objetivo: Determinar el valor pronóstico del FDG-PET intra-tratamiento en pacientes con LH para predecir sobrevida libre de progresión y sobrevida global. Material y método: El estudio fue llevado a cabo en el Servicio de Hematología del Hospital Central de Mendoza incluyendo pacientes con diagnóstico de LH confirmados por histología. De acuerdo al estadio y sitio de presentación, los pacientes recibieron quimioterapia sola o la combinación de radioterapia y quimioterapia, con el uso del esquema ABVD (adriamicina, bleomicina, vinblastina y dacarbazina) como protocolo estándar. Los estudios FDG-PET fueron practicados como parte de la evaluación intra-tratamiento y a la finalización. Resultados: En total fueron evaluados 8 pacientes, Sexo: F/M: 4/4, Edad: 18-58 años (Mediana: 29 años), Estadios: IIB:1, IIIA:2, IIIB:1, IVA:1, IVB:3, regiones nodales: 2-10 (Mediana:4), compromiso extranodal: 4/8, síntomas B: 5/8, enfermedad bulky 2/8 . Subtipos: Escleronodular: 6/8, Celularidad mixta: 1/8, Depleción linfocítica: 1/8. IPS: 1: 3/8 2: 3/8 3: 1/8 4: 0/8 ≥ 5: 1/8. Tratamientos: ABVD x 6: 6/8, ABVD x 6 + Radioterapia: 2/8. PET intermedio: 8/8 negativos (6/8 PET 3, 2/8 PET 2). PET final: 7/8 PET negativo, 1/8 PET positivo. Recaída: 1/8 (10° mes). Seguimiento: 11-37 meses (mediana de 24 meses). Discusión y Conclusiones: Al momento actual el FDG-PET intra-tratamiento demostró tener un importante valor predictivo negativo dado que todos los pacientes, menos uno, se encuentran en remisión completa sin progresión de enfermedad. Resta aún determinar el rol que esta herramienta pueda tener en el futuro en la terapia adaptada al riesgo de pacientes con LH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A small Positron Emission Tomography demonstrator based on LYSO slabs and Silicon Photomultiplier matrices is under construction at the University and INFN of Pisa. In this paper we present the characterization results of the read-out electronics and of the detection system. Two SiPM matrices, composed by 8 × 8 SiPM pixels, 1.5 mm pitch, have been coupled one to one to a LYSO crystals array. Custom Front-End ASICs were used to read the 64 channels of each matrix. Data from each Front-End were multiplexed and sent to a DAQ board for the digital conversion; a motherboard collects the data and communicates with a host computer through a USB port. Specific tests were carried out on the system in order to assess its performance. Futhermore we have measured some of the most important parameters of the system for PET application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Medicina Nuclear (MN) permite investigar o estado fisiológico dos tecidos de forma minimamente invasiva, usando radiofármacos (rf’s), moléculas compostas por um análogo biológico específico desses processos fisiológicos e um marcador radioativo (radionuclídeo). PET/CT (do acrónimo inglês Positron Emission Tomography/Computed Tomography), uma das modalidades de imagem em MN, está a expandir-se rapidamente em muitos Países. As imagens obtidas revelam a biodistribuição dos rf’s usados e permitem conhecer a sua distribuição precisa no organismo. 18F-Fluorodesoxiglicose (FDG), um análogo da glicose, é o rf mais comumente utilizado, isto porque em neoplasias as células são geralmente caracterizadas pelo aumento do metabolismo da glicose. A quantificação realizada em imagens de PET, tem por base uma estimativa quantitativa do metabolismo da glicose no tumor, utilizando o índice de captação estandardizado, SUV (do acrónimo inglês Standard Uptake Value). A realização de estudos dinâmicos em PET/CT, isto é, realizados em sequência temporal imediatamente após a administração endovenosa do rf e, durante um período de tempo pré-determinado (por exemplo, 15 minutos) permite que o registo da cinética inicial dos rf’s seja estudado. A análise dos dados obtidos com o estudo dinâmico permite compreender o grau e a perfusão tumoral. Habitualmente, quanto maior a captação de 18F-FDG num tumor, maior é a sua atividade metabólica glicolítica, o que tem sido traduzido em maior agressividade tumoral. Nesta investigação, realizaram-se estudos dinâmicos num grupo restrito de patologias oncológicas, nomeadamente: carcinoma da bexiga, carcinoma do colo do útero, carcinoma colorretal, carcinoma do endométrio, metástases hepáticas e adenocarcinoma pancreático. Realizaram-se estudos dinâmicos durante cerca de 10/15 minutos, com 1minuto por frame. O objetivo desta Investigação é tentar compreender se, tumores com maior perfusão respondem melhor à Radioterapia (RT), ou se, a resposta é independente da perfusão. Para avaliar os valores de SUV’s ao longo tempo, realizaram-se ROI’s (do acrónimo inglês Region of Interest), nas artérias femorais ou aorta e na lesão tumoral. Com estes dados, criaram-se gráficos de atividade/tempo onde, no eixo das abcissas é representado o tempo e no eixo das ordenadas os valores de SUV. A partir destes gráficos e dos dados neles contidos, calculou-se o Índice de Perfusão Tumoral através de 2 métodos: A, Método Trapezoidal de Aproximação que relaciona a razão entre a área perfusional do tumor e a área de fluxo arterial, até ao momento do cruzamento das curvas; B, mais simples, calculando o Índice de Perfusão do Tumor através da razão entre o valor de SUV máximo da curva tumoral e da curva arterial até ao momento do cruzamento das curvas. O Método de Comparação de Métodos de Altman&Bland, revelou que tanto o método A como o método B são semelhantes para o cálculo do Índice de Perfusão Tumoral. Em conclusão, apesar do número reduzido de indivíduos estudados, os dados apresentados indicam que existe uma tendência para que haja melhor resposta à RT por parte dos tumores com maior índice metabólico e maior índice de perfusão. Os tumores com menor índice metabólico e menor grau perfusional parece que respondem pior à RT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine whether [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) could predict the pathological response in oesophageal cancer after only the first week of neoadjuvant chemoradiation. Thirty-two patients with localised oesophageal cancer had a pretreatment PET scan and a repeat after the first week of chemoradiation. The change in mean maximum standardised uptake value (SUV) and volume of metabolically active tissue (MTV) was compared with the tumour regression grade (TRG) in the final histology. Those who achieved a TRG of 1 and 2 were deemed responders and 3-5 nonresponders. In the responders (28%), the SUV fell from 12.6 (±6.3) to 8.1 (±2.9) after 1 week of chemoradiation (P = 0.070). In nonresponders (72%), the results were 9.7 (±5.4) and 7.1 (±3.8), respectively (P = 0.003). The MTV in responders fell from 36.6 (±22.7) to 22.3 (±10.4) cm3 (P = 0.180), while in nonresponders, this fell from 35.9 (±36.7) to 31.9 (±52.7) cm3 (P = 0.405). There were no significant differences between responders and nonresponders. The hypothesis that early repeat FDG-PET scanning may predict histomorphologic response was not proven. This may reflect an inflammatory effect of radiation that obscures tumour-specific metabolic changes at this time. This assessment may have limited application in predicting response to multimodal regimens for oesophageal cancer. © 2006 Cancer Research UK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to their inherently hypoxic environment, cancer cells often resort to glycolysis, or the anaerobic breakdown of glucose to form ATP to provide for their energy needs, known as the Warburg effect. At the same time, overexpression of the insulin receptor in non-small cell lung cancer (NSCLC) is associated with an increased risk of metastasis and decreased survival. The uptake of glucose into cells is carried out via glucose transporters or GLUTs. Of these, GLUT-4 is essential for insulin-stimulated glucose uptake. Following treatment with the epigenetic targeting agents histone deacetylase inhibitors (HDACi), GLUT-3 and GLUT-4 expression were found to be induced in NSCLC cell lines, with minimal responses in transformed normal human bronchial epithelial cells (HBECs). Similar results for GLUT-4 were observed in cells derived from liver, muscle, kidney and pre-adipocytes. Bioinformatic analysis of the promoter for GLUT-4 indicates that it may also be regulated by several chromatin binding factors or complexes including CTCF, SP1 and SMYD3. Chromatin immunoprecipitation studies demonstrate that the promoter for GLUT-4 is dynamically remodeled in response to HDACi. Overall, these results may have value within the clinical setting as (a) it may be possible to use this to enhance fluorodeoxyglucose (18F) positron emission tomography (FDG-PET) imaging sensitivity; (b) it may be possible to target NSCLC through the use of HDACi and insulin mediated uptake of the metabolic targeting drugs such as 2-deoxyglucose (2-DG); or (c) enhance or sensitize NSCLC to chemotherapy. © 2011 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of semantic impairment arising from brain disease suggest that the anterior temporal lobes are critical for semantic abilities in humans; yet activation of these regions is rarely reported in functional imaging studies of healthy controls performing semantic tasks. Here, we combined neuropsychological and PET functional imaging data to show that when healthy subjects identify concepts at a specific level, the regions activated correspond to the site of maximal atrophy in patients with relatively pure semantic impairment. The stimuli were color photographs of common animals or vehicles, and the task was category verification at specific (e.g., robin), intermediate (e.g., bird), or general (e.g., animal) levels. Specific, relative to general, categorization activated the antero-lateral temporal cortices bilaterally, despite matching of these experimental conditions for difficulty. Critically, in patients with atrophy in precisely these areas, the most pronounced deficit was in the retrieval of specific semantic information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular imaging is utilised in modern medicine to aid in the diagnosis and treatment of disease by allowing its spatiotemporal state to be examined in vivo. This study focuses on the development of novel multimodal molecular imaging agents based on hyperbranched polymers that combine the complementary capabilities of optical fluorescence imaging and positron emission tomography-computed tomography (PET/CT) into one construct. RAFT-mediated polymerisation was used to prepare two hydrophilic hyperbranched polymers that were differentiated by their size and level of branching. The multiple functional end-groups facilitated covalent attachment of both near infrared fluorescent dyes for optical imaging, as well as a copper chelator allowing binding of 64Cu as a PET radio nuclei. In vivo multimodal imaging of mice using PET/CT and planar optical imaging was first used to assess the biodistribution of the polymeric materials and it was shown that the larger and more branched polymer had a significantly longer circulation time. The larger constructs were also shown to exhibit enhanced accumulation in solid tumours in a murine B16 melanoma model. Importantly, it was demonstrated that the PET modality gave rise to high sensitivity immediately after injection of the agent, while the optical modality facilitated extended longitudinal studies, thus highlighting how the complementary capabilities of the molecular imaging agents can be useful for studying various diseases, including cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction
PET-computed tomography (PET-CT) is a useful staging imaging modality in colorectal liver metastases (CRLM). This study aimed to determine whether PET-CT parameters, standardized uptake value (SUV) and reconstructed tumour volume (RTV), are predictors of prognosis and survival.

Methods
A study of all resectable CRLM patients in the regional HPB unit from 2007–2009 was performed. Preoperative PET-CT scans were retrospectively reviewed; SUV, diameter and RTV for each lesion was recorded. Correlation analysis was performed with other pathological and biochemical parameters, by Pearson’s correlation analysis. Survival analysis was performed using Cox regression hazard model. A P value of less than 0.05 was considered statistically significant.

Results
A total of 79 patients were included. SUV moderately correlated with tumour diameter, both PET-CT (r=0.4927; P<0.0001) and histology (r=0.4513; P=0.0003); RTV (r=0.4489; P<0.001), preoperative carcinoembryonic antigen (CEA) (r=0.4977; P=0.0001), and postoperative CEA (r=0.3727; P=0.004). Multivariate analysis found that an independent predictor of SUVmax was preoperative CEA (P=0.03). RTV strongly correlated with preoperative CEA (r=0.9389; P<0.0001). SUV and RTV had a negative effect on survival.

Conclusion
PET-CT, in the setting of CRLM, may have a prognostic role in assessing survival. Although no definite conclusions can be drawn regarding the prognostic role of SUV and RTV, it acts to reinforce the need for further prospective studies to validate these findings.