997 resultados para Nonlinear Eigenvalue Problems
Resumo:
In this paper we study the continuity of asymptotics of semilinear parabolic problems of the form u(t) - div(p(x)del u) + lambda u =f(u) in a bounded smooth domain ohm subset of R `` with Dirichlet boundary conditions when the diffusion coefficient p becomes large in a subregion ohm(0) which is interior to the physical domain ohm. We prove, under suitable assumptions, that the family of attractors behave upper and lower semicontinuously as the diffusion blows up in ohm(0). (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the first phase of a project attempting to construct an efficient general-purpose nonlinear optimizer using an augmented Lagrangian outer loop with a relative error criterion, and an inner loop employing a state-of-the art conjugate gradient solver. The outer loop can also employ double regularized proximal kernels, a fairly recent theoretical development that leads to fully smooth subproblems. We first enhance the existing theory to show that our approach is globally convergent in both the primal and dual spaces when applied to convex problems. We then present an extensive computational evaluation using the CUTE test set, showing that some aspects of our approach are promising, but some are not. These conclusions in turn lead to additional computational experiments suggesting where to next focus our theoretical and computational efforts.
Resumo:
In this work we show that the eigenvalues of the Dirichlet problem for the biharmonic operator are generically simple in the set Of Z(2)-symmetric regions of R-n, n >= 2, with a suitable topology. To accomplish this, we combine Baire`s lemma, a generalised version of the transversality theorem, due to Henry [Perturbation of the boundary in boundary value problems of PDEs, London Mathematical Society Lecture Note Series 318 (Cambridge University Press, 2005)], and the method of rapidly oscillating functions developed in [A. L. Pereira and M. C. Pereira, Mat. Contemp. 27 (2004) 225-241].
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work summarizes the HdHr group of Hermitian integration algorithms for dynamic structural analysis applications. It proposes a procedure for their use when nonlinear terms are present in the equilibrium equation. The simple pendulum problem is solved as a first example and the numerical results are discussed. Directions to be pursued in future research are also mentioned. Copyright (C) 2009 H.M. Bottura and A. C. Rigitano.
Resumo:
The ability of neural networks to realize some complex nonlinear function makes them attractive for system identification. This paper describes a novel method using artificial neural networks to solve robust parameter estimation problems for nonlinear models with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The optimized allocation of protective devices in strategic points of the circuit improves the quality of the energy supply and the system reliability index. This paper presents a nonlinear integer programming (NLIP) model with binary variables, to deal with the problem of protective device allocation in the main feeder and all branches of an overhead distribution circuit, to improve the reliability index and to provide customers with service of high quality and reliability. The constraints considered in the problem take into account technical and economical limitations, such as coordination problems of serial protective devices, available equipment, the importance of the feeder and the circuit topology. The use of genetic algorithms (GAs) is proposed to solve this problem, using a binary representation that does (1) or does not (0) show allocation of protective devices (reclosers, sectionalizers and fuses) in predefined points of the circuit. Results are presented for a real circuit (134 busses), with the possibility of protective device allocation in 29 points. Also the ability of the algorithm in finding good solutions while improving significantly the indicators of reliability is shown. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A procedure for calculation of refrigerant mass flow rate is implemented in the distributed numerical model to simulate the flow in finned-tube coil dry-expansion evaporators, usually found in refrigeration and air-conditioning systems. Two-phase refrigerant flow inside the tubes is assumed to be one-dimensional, unsteady, and homogeneous. In themodel the effects of refrigerant pressure drop and the moisture condensation from the air flowing over the external surface of the tubes are considered. The results obtained are the distributions of refrigerant velocity, temperature and void fraction, tube-wall temperature, air temperature, and absolute humidity. The finite volume method is used to discretize the governing equations. Additionally, given the operation conditions and the geometric parameters, the model allows the calculation of the refrigerant mass flow rate. The value of mass flow rate is computed using the process of parameter estimation with the minimization method of Levenberg-Marquardt minimization. In order to validate the developed model, the obtained results using HFC-134a as a refrigerant are compared with available data from the literature.
Resumo:
An iterated deferred correction algorithm based on Lobatto Runge-Kutta formulae is developed for the efficient numerical solution of nonlinear stiff two-point boundary value problems. An analysis of the stability properties of general deferred correction schemes which are based on implicit Runge-Kutta methods is given and results which are analogous to those obtained for initial value problems are derived. A revised definition of symmetry is presented and this ensures that each deferred correction produces an optimal increase in order. Finally, some numerical results are given to demonstrate the superior performance of Lobatto formulae compared with mono-implicit formulae on stiff two-point boundary value problems. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)