An eigenvalue problem for the biharmonic operator on Z(2)-symmetric regions
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2008
|
Resumo |
In this work we show that the eigenvalues of the Dirichlet problem for the biharmonic operator are generically simple in the set Of Z(2)-symmetric regions of R-n, n >= 2, with a suitable topology. To accomplish this, we combine Baire`s lemma, a generalised version of the transversality theorem, due to Henry [Perturbation of the boundary in boundary value problems of PDEs, London Mathematical Society Lecture Note Series 318 (Cambridge University Press, 2005)], and the method of rapidly oscillating functions developed in [A. L. Pereira and M. C. Pereira, Mat. Contemp. 27 (2004) 225-241]. |
Identificador |
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, v.77, p.424-442, 2008 0024-6107 http://producao.usp.br/handle/BDPI/30648 10.1112/jlms/jdm122 |
Idioma(s) |
eng |
Publicador |
CAMBRIDGE UNIV PRESS |
Relação |
Journal of the London Mathematical Society-second Series |
Direitos |
restrictedAccess Copyright CAMBRIDGE UNIV PRESS |
Palavras-Chave | #GENERIC SIMPLICITY #PLATE EQUATION #STABILIZATION #EQUILIBRIA #DIFFUSION #SPECTRUM #Mathematics |
Tipo |
article original article publishedVersion |