An eigenvalue problem for the biharmonic operator on Z(2)-symmetric regions


Autoria(s): PEREIRA, Antonio L.; PEREIRA, Marcone C.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2008

Resumo

In this work we show that the eigenvalues of the Dirichlet problem for the biharmonic operator are generically simple in the set Of Z(2)-symmetric regions of R-n, n >= 2, with a suitable topology. To accomplish this, we combine Baire`s lemma, a generalised version of the transversality theorem, due to Henry [Perturbation of the boundary in boundary value problems of PDEs, London Mathematical Society Lecture Note Series 318 (Cambridge University Press, 2005)], and the method of rapidly oscillating functions developed in [A. L. Pereira and M. C. Pereira, Mat. Contemp. 27 (2004) 225-241].

Identificador

JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, v.77, p.424-442, 2008

0024-6107

http://producao.usp.br/handle/BDPI/30648

10.1112/jlms/jdm122

http://dx.doi.org/10.1112/jlms/jdm122

Idioma(s)

eng

Publicador

CAMBRIDGE UNIV PRESS

Relação

Journal of the London Mathematical Society-second Series

Direitos

restrictedAccess

Copyright CAMBRIDGE UNIV PRESS

Palavras-Chave #GENERIC SIMPLICITY #PLATE EQUATION #STABILIZATION #EQUILIBRIA #DIFFUSION #SPECTRUM #Mathematics
Tipo

article

original article

publishedVersion