A neural system to robust Nonlinear optimization subject to disjoint and constrained sets


Autoria(s): da Silva, I. N.; de Souza, A. N.; Bordon, M. E.; Ulson, Jose Alfredo Covolan; Callaos, N.; DaSilva, I. N.; Molero, J.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/01/2001

Resumo

The ability of neural networks to realize some complex nonlinear function makes them attractive for system identification. This paper describes a novel method using artificial neural networks to solve robust parameter estimation problems for nonlinear models with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach.

Formato

7-12

Identificador

http://dl.acm.org/citation.cfm?id=704386

World Multiconference on Systemics, Cybernetics and Informatics, Vol 1, Proceedings. Orlando: Int Inst Informatics & Systemics, p. 7-12, 2001.

http://hdl.handle.net/11449/8905

WOS:000175785900002

Idioma(s)

eng

Publicador

Int Inst Informatics & Systemics

Relação

World Multiconference on Systemics, Cybernetics and Informatics, Vol 1, Proceedings

Direitos

closedAccess

Palavras-Chave #neural networks #robust estimation #parameter identification #estimation algorithms
Tipo

info:eu-repo/semantics/conferencePaper