804 resultados para Computational learning theory


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper shows how instructors can use the problem‐based learning method to introduce producer theory and market structure in intermediate microeconomics courses. The paper proposes a framework where different decision problems are presented to students, who are asked to imagine that they are the managers of a firm who need to solve a problem in a particular business setting. In this setting, the instructors’ role isto provide both guidance to facilitate student learning and content knowledge on a just‐in‐time basis

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The identification and integration of reusable and customizable CSCL (Computer Supported Collaborative Learning) may benefit from the capture of best practices in collaborative learning structuring. The authors have proposed CLFPs (Collaborative Learning Flow Patterns) as a way of collecting these best practices. To facilitate the process of CLFPs by software systems, the paper proposes to specify these patterns using IMS Learning Design (IMS-LD). Thus, teachers without technical knowledge can particularize and integrate CSCL tools. Nevertheless, the support of IMS-LD for describing collaborative learning activities has some deficiencies: the collaborative tools that can be defined in these activities are limited. Thus, this paper proposes and discusses an extension to IMS-LD that enables to specify several characteristics of the use of tools that mediate collaboration. In order to obtain a Unit of Learning based on a CLFP, a three stage process is also proposed. A CLFP-based Unit of Learning example is used to illustrate the process and the need of the proposed extension.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

En ciencias de la educación, las últimas décadas han estado marcadas por un interés en las ideas de Lev S. Vygotski. De hecho, a partir de esas ideas se han propuesto varias aplicaciones educativas. Una de ellas es el “Key to learning”. El artículo propone una visión general de este programa educativo desarrollado a partir de algunos trabajos e ideas de autores rusos contemporáneos. Primero, desarrollamos algunas ideas en torno a la noción de zona de desarrollo próximo (ZpD). Después, sugerimos la teoría de las habilidades de aprendizaje. En este sentido, el objetivo principal de “Key to learning” es mejorar las habilidades de aprendizaje cognitivas, comunicativas y directivas de niños de entre 3 a 7 años de edad. Para este propósito son creadas 12 unidades curriculares que componen el programa. Para concluir se enfatiza la creación de zonas de desarrollo próximo estructuradas como parte de un sistema de enseñanza y aprendizaje que vincula la actividad, la asistencia y la agencia

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The book presents the state of the art in machine learning algorithms (artificial neural networks of different architectures, support vector machines, etc.) as applied to the classification and mapping of spatially distributed environmental data. Basic geostatistical algorithms are presented as well. New trends in machine learning and their application to spatial data are given, and real case studies based on environmental and pollution data are carried out. The book provides a CD-ROM with the Machine Learning Office software, including sample sets of data, that will allow both students and researchers to put the concepts rapidly to practice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The brain is a complex system, which produces emergent properties such as those associated with activity-dependent plasticity in processes of learning and memory. Therefore, understanding the integrated structures and functions of the brain is well beyond the scope of either superficial or extremely reductionistic approaches. Although a combination of zoom-in and zoom-out strategies is desirable when the brain is studied, constructing the appropriate interfaces to connect all levels of analysis is one of the most difficult challenges of contemporary neuroscience. Is it possible to build appropriate models of brain function and dysfunctions with computational tools? Among the best-known brain dysfunctions, epilepsies are neurological syndromes that reach a variety of networks, from widespread anatomical brain circuits to local molecular environments. One logical question would be: are those complex brain networks always producing maladaptive emergent properties compatible with epileptogenic substrates? The present review will deal with this question and will try to answer it by illustrating several points from the literature and from our laboratory data, with examples at the behavioral, electrophysiological, cellular and molecular levels. We conclude that, because the brain is a complex system compatible with the production of emergent properties, including plasticity, its functions should be approached using an integrated view. Concepts such as brain networks, graphics theory, neuroinformatics, and e-neuroscience are discussed as new transdisciplinary approaches dealing with the continuous growth of information about brain physiology and its dysfunctions. The epilepsies are discussed as neurobiological models of complex systems displaying maladaptive plasticity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to investigate the learning preferences and the post-secondary educational experiences of a group of Net-Gen adult learners, aged between 18 and 35, currently working in the knowledge economy workplace, and their assessment of how adequately they were prepared to meet the requirements of the knowledge economy workplace. This study utilized an explanatory mixed-method research design. Participants completed a questionnaire providing information on their self-reported learning style preferences, their use of digital tools for formal and informal learning, their use of digital technologies in postsecondary educational experiences, and their use of digital technologies in their workplace. Four volunteers from the questionnaire respondents were selected to participate in interviews based on the diversity of their experiences in higher education, including digital environments, and the diversity of their knowledge economy workplaces. Data collected from the questionnaire were analyzed for descriptive and demographic statistics, and categorized so that common patterns could be identified from information gathered from the online questionnaire and interviews. Findings based on this study indicated that these Net-Gen adult learners were fluent with all types of digital technologies in collaborative environments, expecting their educational experiences to provide a similar experience. Participants clearly expressed an understanding that digital/collaborative aptitudes are essential to successful employment in the knowledge economy workplace. The findings of this study indicated that the majority of participants felt that their post-secondary educational experiences did not adequately prepare them to meet the expectations of this type of working environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Les algorithmes d'apprentissage profond forment un nouvel ensemble de méthodes puissantes pour l'apprentissage automatique. L'idée est de combiner des couches de facteurs latents en hierarchies. Cela requiert souvent un coût computationel plus elevé et augmente aussi le nombre de paramètres du modèle. Ainsi, l'utilisation de ces méthodes sur des problèmes à plus grande échelle demande de réduire leur coût et aussi d'améliorer leur régularisation et leur optimization. Cette thèse adresse cette question sur ces trois perspectives. Nous étudions tout d'abord le problème de réduire le coût de certains algorithmes profonds. Nous proposons deux méthodes pour entrainer des machines de Boltzmann restreintes et des auto-encodeurs débruitants sur des distributions sparses à haute dimension. Ceci est important pour l'application de ces algorithmes pour le traitement de langues naturelles. Ces deux méthodes (Dauphin et al., 2011; Dauphin and Bengio, 2013) utilisent l'échantillonage par importance pour échantilloner l'objectif de ces modèles. Nous observons que cela réduit significativement le temps d'entrainement. L'accéleration atteint 2 ordres de magnitude sur plusieurs bancs d'essai. Deuxièmement, nous introduisont un puissant régularisateur pour les méthodes profondes. Les résultats expérimentaux démontrent qu'un bon régularisateur est crucial pour obtenir de bonnes performances avec des gros réseaux (Hinton et al., 2012). Dans Rifai et al. (2011), nous proposons un nouveau régularisateur qui combine l'apprentissage non-supervisé et la propagation de tangente (Simard et al., 1992). Cette méthode exploite des principes géometriques et permit au moment de la publication d'atteindre des résultats à l'état de l'art. Finalement, nous considérons le problème d'optimiser des surfaces non-convexes à haute dimensionalité comme celle des réseaux de neurones. Tradionellement, l'abondance de minimum locaux était considéré comme la principale difficulté dans ces problèmes. Dans Dauphin et al. (2014a) nous argumentons à partir de résultats en statistique physique, de la théorie des matrices aléatoires, de la théorie des réseaux de neurones et à partir de résultats expérimentaux qu'une difficulté plus profonde provient de la prolifération de points-selle. Dans ce papier nous proposons aussi une nouvelle méthode pour l'optimisation non-convexe.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recurso para profesores de matemáticas de primaria y secundaria. El texto considera las cuestiones relativas a cómo los estudiantes aprenden matemáticas. Cada uno de los once capítulos trata un tema particular que ilustra la interacción entre la teoría y la práctica. Esta edición cuenta con dos nuevos capítulos: uno relacionado con la cognición y la transferencia del aprendizaje, y otro que examina la importancia del modelo de aprendizaje en las matemáticas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper shows how instructors can use the problem‐based learning method to introduce producer theory and market structure in intermediate microeconomics courses. The paper proposes a framework where different decision problems are presented to students, who are asked to imagine that they are the managers of a firm who need to solve a problem in a particular business setting. In this setting, the instructors’ role is to provide both guidance to facilitate student learning and content knowledge on a just‐in‐time basis

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A connection between a fuzzy neural network model with the mixture of experts network (MEN) modelling approach is established. Based on this linkage, two new neuro-fuzzy MEN construction algorithms are proposed to overcome the curse of dimensionality that is inherent in the majority of associative memory networks and/or other rule based systems. The first construction algorithm employs a function selection manager module in an MEN system. The second construction algorithm is based on a new parallel learning algorithm in which each model rule is trained independently, for which the parameter convergence property of the new learning method is established. As with the first approach, an expert selection criterion is utilised in this algorithm. These two construction methods are equivalent in their effectiveness in overcoming the curse of dimensionality by reducing the dimensionality of the regression vector, but the latter has the additional computational advantage of parallel processing. The proposed algorithms are analysed for effectiveness followed by numerical examples to illustrate their efficacy for some difficult data based modelling problems.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article presents, under the perspective of Complexity Theory, the characteristics of the learning process of Spanish as a foreign language in Teletandem. Data were collected from two pairs of Portuguese-Spanish interagents, who were engaged in a systematic and regular interaction, based on the tandem principles. It was found that the learning experience is developed with the peculiarities that arise from the context, agents, members and their nuances, which revealed the presence of a shallow space between the systems of native and foreign languages.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes a 3D virtual lab environment that was developed using OpenSim software integrated into Moodle. Virtuald software tool was used to provide pedagogical support to the lab by enabling to create online texts and delivering them to the students. The courses taught in this virtual lab are methodologically in conformity to theory of multiple intelligences. Some results are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Competitive learning is an important machine learning approach which is widely employed in artificial neural networks. In this paper, we present a rigorous definition of a new type of competitive learning scheme realized on large-scale networks. The model consists of several particles walking within the network and competing with each other to occupy as many nodes as possible, while attempting to reject intruder particles. The particle's walking rule is composed of a stochastic combination of random and preferential movements. The model has been applied to solve community detection and data clustering problems. Computer simulations reveal that the proposed technique presents high precision of community and cluster detections, as well as low computational complexity. Moreover, we have developed an efficient method for estimating the most likely number of clusters by using an evaluator index that monitors the information generated by the competition process itself. We hope this paper will provide an alternative way to the study of competitive learning.