Advances in scaling deep learning algorithms


Autoria(s): Dauphin, Yann
Contribuinte(s)

Yoshua, Bengio

Data(s)

22/04/2016

31/12/1969

22/04/2016

23/03/2016

01/06/2015

Resumo

Les algorithmes d'apprentissage profond forment un nouvel ensemble de méthodes puissantes pour l'apprentissage automatique. L'idée est de combiner des couches de facteurs latents en hierarchies. Cela requiert souvent un coût computationel plus elevé et augmente aussi le nombre de paramètres du modèle. Ainsi, l'utilisation de ces méthodes sur des problèmes à plus grande échelle demande de réduire leur coût et aussi d'améliorer leur régularisation et leur optimization. Cette thèse adresse cette question sur ces trois perspectives. Nous étudions tout d'abord le problème de réduire le coût de certains algorithmes profonds. Nous proposons deux méthodes pour entrainer des machines de Boltzmann restreintes et des auto-encodeurs débruitants sur des distributions sparses à haute dimension. Ceci est important pour l'application de ces algorithmes pour le traitement de langues naturelles. Ces deux méthodes (Dauphin et al., 2011; Dauphin and Bengio, 2013) utilisent l'échantillonage par importance pour échantilloner l'objectif de ces modèles. Nous observons que cela réduit significativement le temps d'entrainement. L'accéleration atteint 2 ordres de magnitude sur plusieurs bancs d'essai. Deuxièmement, nous introduisont un puissant régularisateur pour les méthodes profondes. Les résultats expérimentaux démontrent qu'un bon régularisateur est crucial pour obtenir de bonnes performances avec des gros réseaux (Hinton et al., 2012). Dans Rifai et al. (2011), nous proposons un nouveau régularisateur qui combine l'apprentissage non-supervisé et la propagation de tangente (Simard et al., 1992). Cette méthode exploite des principes géometriques et permit au moment de la publication d'atteindre des résultats à l'état de l'art. Finalement, nous considérons le problème d'optimiser des surfaces non-convexes à haute dimensionalité comme celle des réseaux de neurones. Tradionellement, l'abondance de minimum locaux était considéré comme la principale difficulté dans ces problèmes. Dans Dauphin et al. (2014a) nous argumentons à partir de résultats en statistique physique, de la théorie des matrices aléatoires, de la théorie des réseaux de neurones et à partir de résultats expérimentaux qu'une difficulté plus profonde provient de la prolifération de points-selle. Dans ce papier nous proposons aussi une nouvelle méthode pour l'optimisation non-convexe.

Deep learning algorithms are a new set of powerful methods for machine learning. The general idea is to combine layers of latent factors into hierarchies. This usually leads to a higher computational cost and having more parameters to tune. Thus scaling to larger problems will require not only reducing their computational cost but also improving regularization and optimization. This thesis investigates scaling from these three perspectives. We first study the problem of reducing the computational cost of some deep learning algorithms. We propose methods to scale restricted Boltzmann machines (RBM) and denoising auto-encoders (DAE) to very high-dimensional sparse distributions. This is important for applications of deep learning to natural language processing. Both methods (Dauphin et al., 2011; Dauphin and Bengio, 2013) rely on importance sampling to subsample the learning objective of these models. We show that this greatly reduces the training time, leading to 2 orders of magnitude speed ups on several benchmark datasets without losses in the quality of the model. Second, we introduce a powerful regularization method for deep neural nets. Experiments have shown that proper regularization is in many cases crucial to obtaining good performance out of larger networks (Hinton et al., 2012). In Rifai et al. (2011), we propose a new regularizer that combines unsupervised learning and tangent propagation (Simard et al., 1992). The method exploits several geometrical insights and was able at the time of publication to reach state-of-the-art results on competitive benchmarks. Finally, we consider the problem of optimizing over high-dimensional non-convex loss surfaces like those found in deep neural nets. Traditionally, the main difficulty in these problems is considered to be the abundance of local minima. In Dauphin et al. (2014a) we argue, based on results from statistical physics, random matrix theory, neural network theory, and empirical evidence, that the vast majority of critical points are saddle points, not local minima. We also propose a new optimization method for non-convex optimization.

Identificador

http://hdl.handle.net/1866/13710

Idioma(s)

en

Palavras-Chave #Deep learning #Neural networks #High-dimensional non-convex optimization #Boltzmann machines #Auto-encoders #Apprentissage profond #Réseaux de neurones #Optimisation à haute dimensoin #machine de Boltzmann #Auto-encodeurs #Applied Sciences - Computer Science / Sciences appliqués et technologie - Informatique (UMI : 0984)
Tipo

Thèse ou Mémoire numérique / Electronic Thesis or Dissertation