854 resultados para Cdse Nanocrystals
Resumo:
The linear-polarization optical property of CdSe quantum rods is studied in the framework of effective-mass envelope function theory.The effects of shape and magnetic field on the linear polarization factors are investigated.It is found that CdSe quantum spheres have negative polarization factors (xy-polarized emission)and quantum long rods with small radius have positive linear polarization factors (z-polarized emission).The z-direction is the direction of the c axis.Quantum long rods with large radius have negative linear polarization factors,due to the hexagonal crystal symmetry and the crystal field splitting energy.The linear polarization factors decrease and may change from a positive value to a negative value;i.e.,the z-polarized emissions decrease relative to xy-polarized emissions as the magnetic field applied along the z direction increases.
Resumo:
Si-rich silicon oxide films were deposited by RF magnetron sputtering onto composite Si/SiO2 targets. After annealed at different temperature, the silicon oxide films embedded with silicon nanocrystals were obtained. The photoluminescenee(PL) from the silicon oxide films embedded with silicon nanocrystals was observed at room temperature. The strong peak is at 360 nm, its position is independent of the annealing temperature. The origin of the 360-nm PL in the silicon oxide films embedded with silicon nanoerystals was discussed.
Resumo:
采用离子交换方法,在Y型沸石分子筛中首次组装了质量比分别为5%和15%的CdSe纳米团簇;样品漫反射光谱和透射电镜形貌相的实验结果证实,该制备过程是成功可行的,并得到了分布均匀、尺寸比较单一的团簇材料。采用正电子湮没寿命谱对上述两种样品、Y型沸石原粉和纯的CdSe粉末样品进行测量,得到了有关团簇生长过程及其微结构的有用信息。
Resumo:
在沸石分子筛中组装CdSe而形成半导体纳米团簇材料,并将组装CdSe后的沸石微粉制成完整的透射电镜薄膜,结合能谱测试,在透射电镜下观察所制得的材料的微观结构和形貌。结果表明在沸石中形成了尺寸单一、分布均匀的团簇材料。
Resumo:
于2010-11-23批量导入
Resumo:
In this study, silicon nanocrystals embedded in SiO2 matrix were formed by conventional plasma enhanced chemical vapor deposition (PECVD) followed by high temperature annealing. The formation of silicon nanocrystals (nc-Si), their optical and micro-structural properties were studied using various experimental techniques, including Fourier transform infrared spectroscopy, micro-Raman spectra, high resolution transmission electron microscopy and x-ray photoelectron spectroscopy. Very strong red light emission from silicon nanocrystals at room temperature (RT) was observed. It was found that there is a strong correlation between the PL intensity and the substrate temperature, the oxygen content and the annealing temperature. When the substrate temperature decreases from 250degreesC to RT, the PL intensity increases by two orders of magnitude.
Resumo:
Structural dependence on annealing of a-SiOx:H was studied by using infrared absorption and Raman scattering. The appearance of Raman peaks in the range of 513-519cm(-1) after 1170 degreesC annealing was interpreted as the formation nanocrystalline silicon with the sizes from 3-10nm. The Raman spectra also show the existence of amorphous-like silicon phase, which is associated with Si-Si bond re-construction at boundaries of silicon nanocrystallites. The presence of the shoulder at 980cm(-1) of Si-O-Si stretching vibration at 1085cm(-1) in infrared spectra imply that except that SiO2 phase, there is silicon sub-oxide phase in the films annealed at 1170 degreesC. This sub-oxide phase is located at the interface between Si crystallites and SiO2, and thus support the shell model for the mixed structures of Si grains and SiO2 matrix.
Resumo:
CdSe nanoclusters overcoated with CdS shell were prepared with macapoacetic acid as stabilizer. The optical properties of CdSe nanoclusters and the influence of CdS shell on the electronic structures of CdSe cores were studied by optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies. Based on PL and PLE results and the theoretical calculation on fine structure of bandedge exciton, a model of formation of excimer within the small clusters was proposed to explain the large Stokes shift of luminescence from absorption edge observed in PL results. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
CdS/ZnS core/shell nanocrystals were prepared from an aqueous/alcohol medium. A red shift of the absorption spectrum and an increase of the room temperature photoluminescence intensity accompanied shell growth.