907 resultados para Bivariate Normal Distribution
Resumo:
Carbendazim-amended soil was placed above or below unamended soil. Control tests comprised two layers of unamended soil. Allolobophora chlorotica earthworms were added to either the upper or the unamended soil. After 72 h vertical distributions of earthworms were compared between control and carbendazim-amended experiments. Earthworm distributions in the carbendazim-amended test containers differed significantly from the ‘normal’ distribution observed in the control tests. In the majority of the experiments, earthworms significantly altered their burrowing behaviour to avoid carbendazim. However, when earthworms were added to an upper layer of carbendazim-amended soil they remained in this layer. This non-avoidance is attributed to (1) the earthworms’ inability to sense the lower layer of unamended soil and (2) the toxic effect of carbendazim inhibiting burrowing. Earthworms modified their burrowing behaviour in response to carbendazim in the soil. This may explain anomalous results observed in pesticide field trials when carbendazim is used as a control substance.
Resumo:
This research is associated with the goal of the horticultural sector of the Colombian southwest, which is to obtain climatic information, specifically, to predict the monthly average temperature in sites where it has not been measured. The data correspond to monthly average temperature, and were recorded in meteorological stations at Valle del Cauca, Colombia, South America. Two components are identified in the data of this research: (1) a component due to the temporal aspects, determined by characteristics of the time series, distribution of the monthly average temperature through the months and the temporal phenomena, which increased (El Nino) and decreased (La Nina) the temperature values, and (2) a component due to the sites, which is determined for the clear differentiation of two populations, the valley and the mountains, which are associated with the pattern of monthly average temperature and with the altitude. Finally, due to the closeness between meteorological stations it is possible to find spatial correlation between data from nearby sites. In the first instance a random coefficient model without spatial covariance structure in the errors is obtained by month and geographical location (mountains and valley, respectively). Models for wet periods in mountains show a normal distribution in the errors; models for the valley and dry periods in mountains do not exhibit a normal pattern in the errors. In models of mountains and wet periods, omni-directional weighted variograms for residuals show spatial continuity. The random coefficient model without spatial covariance structure in the errors and the random coefficient model with spatial covariance structure in the errors are capturing the influence of the El Nino and La Nina phenomena, which indicates that the inclusion of the random part in the model is appropriate. The altitude variable contributes significantly in the models for mountains. In general, the cross-validation process indicates that the random coefficient model with spatial spherical and the random coefficient model with spatial Gaussian are the best models for the wet periods in mountains, and the worst model is the model used by the Colombian Institute for Meteorology, Hydrology and Environmental Studies (IDEAM) to predict temperature.
Resumo:
The Rank Forum on Vitamin D was held on 2nd and 3rd July 2009 at the University of Surrey, Guildford, UK. The workshop consisted of a series of scene-setting presentations to address the current issues and challenges concerning vitamin D and health, and included an open discussion focusing on the identification of the concentrations of serum 25-hydroxyvitamin D (25(OH)D) (a marker of vitamin D status) that may be regarded as optimal, and the implications this process may have in the setting of future dietary reference values for vitamin D in the UK. The Forum was in agreement with the fact that it is desirable for all of the population to have a serum 25(OH)D concentration above 25 nmol/l, but it discussed some uncertainty about the strength of evidence for the need to aim for substantially higher concentrations (25(OH)D concentrations . 75 nmol/l). Any discussion of ‘optimal’ concentration of serum 25(OH)D needs to define ‘optimal’ with care since it is important to consider the normal distribution of requirements and the vitamin D needs for a wide range of outcomes. Current UK reference values concentrate on the requirements of particular subgroups of the population; this differs from the approaches used in other European countries where a wider range of age groups tend to be covered. With the re-emergence of rickets and the public health burden of low vitamin D status being already apparent, there is a need for urgent action from policy makers and risk managers. The Forum highlighted concerns regarding the failure of implementation of existing strategies in the UK for achieving current vitamin D recommendations.
Resumo:
In most in vitro studies of oral drug permeability, little attempt is made to reproduce the gastrointestinal lumenal environment. The aim of this study was to evaluate the compatibility of simulated intestinal fluid (SIF) solutions with Caco-2 cell monolayers and Ussing chamber-mounted rat ileum under standard permeability experiment protocols. In preliminary experiments, fasted-state simulated intestinal fluid (FaSSIF) and fed-state simulated intestinal fluid (FeSSIF) solutions based on the dissolution medium formulae of Dressman and co-workers (1998) were modified for compatibility with Caco-2 cells to produce FaS-SIF and FeSSIF "transport" solutions for use with in vitro permeability models. For Caco-2 cells exposed to FaSSIF and FESSIF transport solutions, the transepithelial electrical resistance was maintained for over 4 h and mannitol permeability was equivalent to that in control (Hank's Balanced Salt Solution-treated) cell layers. Scanning electron microscopy revealed that microvilli generally maintained a normal distribution, although some shortening of microvilli and occasional small areas of denudation were observed. For rat ileum in the Ussing chambers, the potential difference (PD) collapsed to zero over 120 min when exposed to the FaSSIF transport solution and an even faster collapse of the PD was observed when the FeSSIF transport solution was used. Electron micrographs revealed erosion of the villi tips and substantial denudation of the microvilli after exposure of ileal tissue to FaSSIF and FeSSIF solutions, and permeability to mannitol was increased by almost two-fold. This study indicated that FaSSIF and FeSSIF transport solutions can be used with Caco-2 monolayers to evaluate drug permeability, but rat ileum in Ussing chambers is adversely affected by these solutions. Metoprolol permeability in Caco-2 experiments was reduced by 33% using the FaSSIF and 75% using the FeSSIF compared to permeability measured using HBSS. This illustrates that using physiological solutions can influence permeability measurements.
Resumo:
We use sunspot group observations from the Royal Greenwich Observatory (RGO) to investigate the effects of intercalibrating data from observers with different visual acuities. The tests are made by counting the number of groups RB above a variable cut-off threshold of observed total whole-spot area (uncorrected for foreshortening) to simulate what a lower acuity observer would have seen. The synthesised annual means of RB are then re-scaled to the full observed RGO group number RA using a variety of regression techniques. It is found that a very high correlation between RA and RB (rAB > 0.98) does not prevent large errors in the intercalibration (for example sunspot maximum values can be over 30 % too large even for such levels of rAB). In generating the backbone sunspot number (RBB), Svalgaard and Schatten (2015, this issue) force regression fits to pass through the scatter plot origin which generates unreliable fits (the residuals do not form a normal distribution) and causes sunspot cycle amplitudes to be exaggerated in the intercalibrated data. It is demonstrated that the use of Quantile-Quantile (“Q Q”) plots to test for a normal distribution is a useful indicator of erroneous and misleading regression fits. Ordinary least squares linear fits, not forced to pass through the origin, are sometimes reliable (although the optimum method used is shown to be different when matching peak and average sunspot group numbers). However, other fits are only reliable if non-linear regression is used. From these results it is entirely possible that the inflation of solar cycle amplitudes in the backbone group sunspot number as one goes back in time, relative to related solar-terrestrial parameters, is entirely caused by the use of inappropriate and non-robust regression techniques to calibrate the sunspot data.
Resumo:
An extensive experimental and simulation study is carried out in conventional magnetorheological fluids formulated by dispersion of mixtures of carbonyl iron particles having different sizes in Newtonian carriers. Apparent yield stress data are reported for a wide range of polydispersity indexes (PDI) from PDI = 1.63 to PDI = 3.31, which for a log-normal distribution corresponds to the standard deviation ranging from to . These results demonstrate that the effect of polydispersity is negligible in this range in spite of exhibiting very different microstructures. Experimental data in the magnetic saturation regime are in quantitative good agreement with particle-level simulations under the assumption of dipolar magnetostatic forces. The insensitivity of the yield stresses to the polydispersity can be understood from the interplay between the particle cluster size distribution and the packing density of particles inside the clusters.
Resumo:
We study segregation phenomena in 57 groups selected from the 2dF Percolation-Inferred Galaxy Groups (2PIGG) catalogue of galaxy groups. The sample corresponds to those systems located in areas of at least 80 per cent redshift coverage out to 10 times the radius of the groups. The dynamical state of the galaxy systems was determined after studying their velocity distributions. We have used the Anderson-Darling test to distinguish relaxed and non-relaxed systems. This analysis indicates that 84 per cent of groups have galaxy velocities consistent with the normal distribution, while 16 per cent of them have more complex underlying distributions. Properties of the member galaxies are investigated taking into account this classification. Our results indicate that galaxies in Gaussian groups are significantly more evolved than galaxies in non-relaxed systems out to distances of similar to 4R(200), presenting significantly redder (B - R) colours. We also find evidence that galaxies with M(R) <= -21.5 in Gaussian groups are closer to the condition of energy equipartition.
Resumo:
Kumaraswamy [Generalized probability density-function for double-bounded random-processes, J. Hydrol. 462 (1980), pp. 79-88] introduced a distribution for double-bounded random processes with hydrological applications. For the first time, based on this distribution, we describe a new family of generalized distributions (denoted with the prefix `Kw`) to extend the normal, Weibull, gamma, Gumbel, inverse Gaussian distributions, among several well-known distributions. Some special distributions in the new family such as the Kw-normal, Kw-Weibull, Kw-gamma, Kw-Gumbel and Kw-inverse Gaussian distribution are discussed. We express the ordinary moments of any Kw generalized distribution as linear functions of probability weighted moments (PWMs) of the parent distribution. We also obtain the ordinary moments of order statistics as functions of PWMs of the baseline distribution. We use the method of maximum likelihood to fit the distributions in the new class and illustrate the potentiality of the new model with an application to real data.
Resumo:
In this paper we deal with robust inference in heteroscedastic measurement error models Rather than the normal distribution we postulate a Student t distribution for the observed variables Maximum likelihood estimates are computed numerically Consistent estimation of the asymptotic covariance matrices of the maximum likelihood and generalized least squares estimators is also discussed Three test statistics are proposed for testing hypotheses of interest with the asymptotic chi-square distribution which guarantees correct asymptotic significance levels Results of simulations and an application to a real data set are also reported (C) 2009 The Korean Statistical Society Published by Elsevier B V All rights reserved
Resumo:
The purpose of this paper is to develop a Bayesian approach for log-Birnbaum-Saunders Student-t regression models under right-censored survival data. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the considered model. In order to attenuate the influence of the outlying observations on the parameter estimates, we present in this paper Birnbaum-Saunders models in which a Student-t distribution is assumed to explain the cumulative damage. Also, some discussions on the model selection to compare the fitted models are given and case deletion influence diagnostics are developed for the joint posterior distribution based on the Kullback-Leibler divergence. The developed procedures are illustrated with a real data set. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In interval-censored survival data, the event of interest is not observed exactly but is only known to occur within some time interval. Such data appear very frequently. In this paper, we are concerned only with parametric forms, and so a location-scale regression model based on the exponentiated Weibull distribution is proposed for modeling interval-censored data. We show that the proposed log-exponentiated Weibull regression model for interval-censored data represents a parametric family of models that include other regression models that are broadly used in lifetime data analysis. Assuming the use of interval-censored data, we employ a frequentist analysis, a jackknife estimator, a parametric bootstrap and a Bayesian analysis for the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Furthermore, for different parameter settings, sample sizes and censoring percentages, various simulations are performed; in addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to a modified deviance residual in log-exponentiated Weibull regression models for interval-censored data. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Skew-normal distribution is a class of distributions that includes the normal distributions as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in a multivariate, null intercept, measurement error model [R. Aoki, H. Bolfarine, J.A. Achcar, and D. Leao Pinto Jr, Bayesian analysis of a multivariate null intercept error-in -variables regression model, J. Biopharm. Stat. 13(4) (2003b), pp. 763-771] where the unobserved value of the covariate (latent variable) follows a skew-normal distribution. The results and methods are applied to a real dental clinical trial presented in [A. Hadgu and G. Koch, Application of generalized estimating equations to a dental randomized clinical trial, J. Biopharm. Stat. 9 (1999), pp. 161-178].
Resumo:
In this article, we compare three residuals based on the deviance component in generalised log-gamma regression models with censored observations. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and the empirical distribution of each residual is displayed and compared with the standard normal distribution. For all cases studied, the empirical distributions of the proposed residuals are in general symmetric around zero, but only a martingale-type residual presented negligible kurtosis for the majority of the cases studied. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for the martingale-type residual in generalised log-gamma regression models with censored data. A lifetime data set is analysed under log-gamma regression models and a model checking based on the martingale-type residual is performed.
Resumo:
The Birnbaum-Saunders regression model is becoming increasingly popular in lifetime analyses and reliability studies. In this model, the signed likelihood ratio statistic provides the basis for testing inference and construction of confidence limits for a single parameter of interest. We focus on the small sample case, where the standard normal distribution gives a poor approximation to the true distribution of the statistic. We derive three adjusted signed likelihood ratio statistics that lead to very accurate inference even for very small samples. Two empirical applications are presented. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we discuss inferential aspects for the Grubbs model when the unknown quantity x (latent response) follows a skew-normal distribution, extending early results given in Arellano-Valle et al. (J Multivar Anal 96:265-281, 2005b). Maximum likelihood parameter estimates are computed via the EM-algorithm. Wald and likelihood ratio type statistics are used for hypothesis testing and we explain the apparent failure of the Wald statistics in detecting skewness via the profile likelihood function. The results and methods developed in this paper are illustrated with a numerical example.