924 resultados para Associative algebras


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let R be a noncommutative central simple algebra, the center k of which is not absolutely algebraic, and consider units a,b of R such that {a,a(b)} freely generate a free group. It is shown that such b can be chosen from suitable Zariski dense open subsets of R, while the a can be chosen from a set of cardinality \k\ (which need not be open).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we prove that, if (U, ) is a finite dimensional baric algebra of (gamma, delta) type over a field F of characteristic not equal 2,3,5 such that gamma(2) - delta(2) + delta = 1 and 0,1, then rad(U) = R(U)boolean AND(bar(U))(2), where R(U) is the nilradical (maximal nil ideal) of U.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the problem of the existence of filtered multiplicative bases of a restricted enveloping algebra u(L), where L is a finite-dimensional and p-nilpotent restricted Lie algebra over a field of positive characteristic p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, binary-Lie, assocyclic, and binary (-1,1) algebras are studied. We prove that, for every assocyclic algebra A, the algebra A(-) is binary-Lie. We find a simple non-Malcev binary-Lie superalgebra T that cannot be embedded in A(-s) for an assocyclic superalgebra A. We use the Grassmann envelope of T to prove the similar result for algebras. This solve negatively a problem by Filippov (see [1, Problem 2.108]). Finally, we prove that the superalgebra T is isomorphic to the commutator superalgebra A(-s) for a simple binary (-1,1) superalgebra A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between an algebra and its associated monomial algebra is investigated when at least one of the algebras is d-Koszul It is shown that an algebra which has a reduced Grobnerbasis that is composed of homogeneous elements of degree d is d-Koszul if and only if its associated monomial algebra is d-Koszul The class of 2-d-determined algebras and the class 2-d-Koszul algebras are introduced In particular it is shown that 2-d-determined monomial algebras are 2-d-Koszul algebras and the structure of the ideal of relations of such an algebra is completely determined (C) 2010 Elsevier B V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let F be an algebraically closed field and let A and B be arbitrary finite dimensional simple algebras over F. We prove that A and B are isomorphic if and only if they satisfy the same identities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determine the structure of the semisimple group algebra of certain groups over the rationals and over those finite fields where the Wedderburn decompositions have the least number of simple components We apply our work to obtain similar information about the loop algebras of mdecomposable RA loops and to produce negative answers to the isomorphism problem over various fields (C) 2010 Elsevier Inc All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1996, Jespers and Wang classified finite semigroups whose integral semigroup ring has finitely many units. In a recent paper, Iwaki-Juriaans-Souza Filho continued this line of research by partially classifying the finite semigroups whose rational semigroup algebra contains a Z-order with hyperbolic unit group. In this paper, we complete this classification and give an easy proof that deals with all finite semigroups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let * be an involution of a group algebra FG induced by an involution of the group G. For char F not equal 2, we classify the torsion groups G with no elements of order 2 whose Lie algebra of *-skew elements is nilpotent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address two problems with the structure and representation theory of finite W-algebras associated with general linear Lie algebras. Finite W-algebras can be defined using either Kostant`s Whittaker modules or a quantum Hamiltonian reduction. Our first main result is a proof of the Gelfand-Kirillov conjecture for the skew fields of fractions of finite W-algebras. The second main result is a parameterization of finite families of irreducible Gelfand-Tsetlin modules using Gelfand-Tsetlin subalgebra. As a corollary, we obtain a complete classification of generic irreducible Gelfand-Tsetlin modules for finite W-algebras. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determine derived representation type of complete finitely generated local and two-point algebras over an algebraically closed field. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We define intrinsic, natural and metrizable topologies T(Omega), T, T(s,Omega) and T(s) in G(Omega), (K) over bar, G(s)(Omega) and (K) over bar (s) respectively. The topology T(Omega) induces T, T(s,Omega) and T(s). The topologies T(s,Omega) and T(s) coincide with the Scarpalezos sharp topologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monoidal logic, ML for short, which formalized the fuzzy logics of continuous t-norms and their residua, has arisen great interest, since it has been applied to fuzzy mathematics, artificial intelligence, and other areas. It is clear that fuzzy logics basically try to represent imperfect or fuzzy information aiming to model the natural human reasoning. On the other hand, in order to deal with imprecision in the computational representation of real numbers, the use of intervals have been proposed, as it can guarantee that the results of numerical computation are in a bounded interval, controlling, in this way, the numerical errors produced by successive roundings. There are several ways to connect both areas; the most usual one is to consider interval membership degrees. The algebraic counterpart of ML is ML-algebra, an interesting structure due to the fact that by adding some properties it is possible to reach different classes of residuated lattices. We propose to apply an interval constructor to ML-algebras and some of their subclasses, to verify some properties within these algebras, in addition to the analysis of the algebraic aspects of them

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of the reducibility of the Fock space representation of the q-deformed harmonic oscillator algebra for real and root of unity values of the deformation parameter is carried out by using the properties of the Gauss polynomials. When the deformation parameter is a root of unity, an interesting result comes out in the form of a reducibility scheme for the space representation which is based on the classification of the primitive or nonprimitive character of the deformation parameter. An application is carried out for a q-deformed harmonic oscillator Hamiltonian, to which the reducibility scheme is explicitly applied.