978 resultados para non-smooth vector fields
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Massless scalar and vector fields are coupled to the Lyra geometry by means of the Duffin-Kemmer-Petiau (DKP) theory. Using the Schwinger variational principle, the equations of motion, conservation laws and gauge symmetry are implemented. We find that the scalar field couples to the anholonomic part of the torsion tensor, and the gauge symmetry of the electromagnetic field does not break by the coupling with torsion.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper deals with a class of singularly perturbed reversible planar vector fields around the origin where the normal hyperbolicity assumption is not assumed. We exhibit conditions for the existence of infinitely many periodic orbits and hetero-clinic cycles converging to singular orbits with respect to the Hausdorf distance. In addition, generic normal forms of such singularities are presented.
Resumo:
In this paper singularly perturbed reversible vector fields defined in R-n without normal hyperbolicity conditions are discussed. The main results give conditions for the existence of infinitely many periodic orbits and heteroclinic cycles converging to singular orbits with respect to the Hausdorff distance.
Resumo:
In this work we consider the dynamic consequences of the existence of infinite heteroclinic cycle in planar polynomial vector fields, which is a trajectory connecting two saddle points at infinity. It is stated that, although the saddles which form the cycle belong to infinity, for certain types of nonautonomous perturbations the perturbed system may present a complex dynamic behavior of the solutions in a finite part of the phase plane, due to the existence of tangencies and transversal intersections of their stable and unstable manifolds. This phenomenon might be called the chaos arising from infinity. The global study at infinity is made via the Poincare Compactification and the argument used to prove the statement is the Birkhoff-Smale Theorem. (c) 2004 WILEY-NCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We study the existence of periodic solutions in the neighbourhood of symmetric (partially) elliptic equilibria in purely reversible Hamiltonian vector fields. These are Hamiltonian vector fields with an involutory reversing symmetry R. We contrast the cases where R acts symplectically and anti-symplectically. In case R acts anti-symplectically, generically purely imaginary eigenvalues are isolated, and the equilibrium is contained in a local two-dimensional invariant manifold containing symmetric periodic solutions encircling the equilibrium point. In case R acts symplectically, generically purely imaginary eigenvalues are doubly degenerate, and the equilibrium is contained in two two-dimensional invariant manifolds containing nonsymmetric periodic solutions encircling the equilibrium point. In addition, there exists a three-dimensional invariant surface containing a two-parameter family of symmetric periodic solutions.
Resumo:
In this paper singularly perturbed vector fields Xε defined in ℝ2 are discussed. The main results use the solutions of the linear partial differential equation XεV = div(Xε)V to give conditions for the existence of limit cycles converging to a singular orbit with respect to the Hausdorff distance. © SPM.
Resumo:
This paper is mainly devoted to the study of the limit cycles that can bifurcate from a linear center using a piecewise linear perturbation in two zones. We consider the case when the two zones are separated by a straight line Σ and the singular point of the unperturbed system is in Σ. It is proved that the maximum number of limit cycles that can appear up to a seventh order perturbation is three. Moreover this upper bound is reached. This result confirms that these systems have more limit cycles than it was expected. Finally, center and isochronicity problems are also studied in systems which include a first order perturbation. For the latter systems it is also proved that, when the period function, defined in the period annulus of the center, is not monotone, then it has at most one critical period. Moreover this upper bound is also reached.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Matemática Universitária - IGCE