899 resultados para SPONTANEOUS LOCOMOTOR-ACTIVITY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bipolar disorder has been growing in several countries. It is a disease with high mortality and has been responsible by the social isolation of the patients. Bipolar patients have alterations in circadian timing system, showing a phase shift in various physiological variables. There are several arguments demonstrating alterations in circadian rhythms may be part of the bipolar disorder pathophysiology. Given the necessity for further elucidation, the goal of this study was to validate the forced desynchronization protocol as an animal model for bipolar disorder. To do this, Wistar rats were submitted to a forced desynchronization protocol which consists in a symmetrical light dark cycle with 22h. Under this protocol, rats dissociate the locomotor activity rhythm into two components: one synchronized to the light / dark cycle with 22h, and another component with period longer than 24 hours following the animal endogenous period. These rhythms with different periods sometimes there is coincidence, which we named CAP (Coincidence Active Phase) and the opposite phase, non-coincidence, called NCAP (Non-Concidence Active Phase). The hypothesis is that in CAP animals present a mania-like behavior and animals in NCAP depressive-like behavior. We found some evidence described in detail throughout this thesis. In sum, the animals under forced desynchronization protocol were more stressed, showed an increase in stereotypic behaviors such as grooming and reduction in other behaviors such as risk assessment and vertical exploration when compared to the control group. The CAP animals showed increased locomotor activity, especially during the dark phase when compared to controls (rats under T24) and less depressive behavior in the forced swim test. The animals in NCAP showed a higher anxiety in elevated plus maze, but they don t have ahnedonia. The animals under dissociation have more labeled 5HT1A cells at the amygdala area, which appoint that they have more amygdala inhibition. Taking these data together, we could partially validated the forced desynchronization protocol as an animal model for mood oscillations

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Caffeine is considered the most consumed psychostimulant in the world, presenting several central and peripheral effects. In the Central Nervous System the major effect occur by its antagonistic activity at the A1 and A2a subtypes of the adenosine receptors. These receptors are responsible for the slow-wave sleep induction, and their binding, caused by the consumption of foods and beverages that contain caffeine, cause behaviors like increase of alertness, mood and locomotion. The effects of caffeine on memory are still discussed because of the diversity of experimental protocols. Also, it does not have the same effects on all stages of the processing of memory - acquisition, consolidation and recall. Thus, using the marmoset (Callitrhix jacchus) as subject, we aim to evaluate the effects of caffeine on the memory of this primate through the conditioned place preference paradigm, where the animal selects a context by presence of food. This cognitive task consists of five phases. The first phase was two sessions of pre-exposure, in which they were evaluated for preference for any compartment of the apparatus. Then, we proceeded the training, conditioning the animals to the food-present context for 8 days. Then, there was administration of caffeine or placebo (10mg/kg) for 8 consecutive days, during the pre-sleep phase, where the 20 animals were distributed in two groups: placebo and repeated. The forth phase was one day of retraining, a re-exposure of the apparatus to the marmosets followed by the administration of caffeine (for the repeated group and a new group called abstinence) or placebo (for placebo and abstinence groups). Finally, was the test where we evaluated if the subjects learned where the food was present. Moreover, in this work we evaluate the existence of differences between females and males on the task, and the locomotor activity for the experimental groups. The results showed that in the pre-exposure phase the animals were habituated on the apparatus and did not present differences for any contexts. In training, they were able to learn the conditioning task, independent of gender. For the retraining, the two groups exhibited more interactions in rewarded context than that in non-rewarded context. Nevertheless, in the locomotor activity, the repeated group moved similarly in contact with the apparatus and outside of it. In the other hand, the animals of the placebo group moved more when in contact with the apparatus. In the test phase, the marmosets under influence of caffeine presented an increase in the locomotor activity when compared with the placebo group, corroborating works that show this increase in locomotion. In the learning evaluation, the continuous and abstinence groups had a bad performance in the task in relation to the placebo and acute groups. This suggests that the prolonged administration of caffeine disrupts the memories because it affected sleep, which is largely responsible offline processing of memories

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The lost of phase relationship between rhythms and behaviour can, and often do, undesirable consequences. The purpose os study was to ascertain the effect of circadian desynchronization in T22 about metabolism of wistar rats. The subjects consisted of 24 animals separated in two groups: control (n=12) T24 with 8 weeks of aged and experimental group (n=12) T22, also with 8 weeks of aged. Both the groups were subject to register of locomotor actitivity, body temperature, body weight and food intake in all the experiment. And more, both the groups were subject to food deprivation, running in treadmill and forced swimming. The results show rhythm of locomotor activity and body temperature desynchronized. Dont exist diference in body weight between both the groups (T24 = 386,75±40,78g e T22 380,83±44,28g) . However, the food intake was different between the phases, light and dark, in intergroup and intragroup. The body temperature was not different in food deprivation. The same ocurred for running in treadmill and forced swimming. Since similar alterations occur in shift workers, it is proposed that the experimental paradigm presented in this manuscript is a useful model of shift work. That is, alterations in activity/rest cycles and consummatory behavior can affect the health of organism

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the main environmental cues for the adjustment of temporal organization of the animals is the light-dark cycle (LD), which undergoes changes in phase duration throughout the seasons. Photoperiod signaling by melatonin in mammals allows behavioral changes along the year, as in the activity-rest cycle, in mood states and in cognitive performance. The aim of this study was to investigate if common marmoset (Callithrix jacchus) exhibits behavioral changes under short and long photoperiods in a 24h cycle, assessing their individual behaviors, vocal repertoire, exploratory activity (EA), recognition memory (RM) and the circadian rhythm of locomotor activity (CRA). Eight adult marmosets were exposed to a light-dark cycle of 12:12; LD 08:16; LD 12:12 and LD 16:08, sequentially, for four weeks in each condition. Locomotor activity was recorded 24h/day by passive infrared motion detectors above the individual cages. A video camera system was programmed to record each animal, twice a week, on the first two light hours. From the videos, frequency of behaviors was registered as anxiety-like, grooming, alert, hanging position, staying in nest box and feeding using continuous focal animal sampling method. Simultaneously, the calls emitted in the experimental room were recorded by a single microphone centrally located and categorized as affiliative (whirr, chirp), contact (phee), long distance (loud shrill), agonistic (twitter) and alarm (tsik, seep, see). EA was assessed on the third hour after lights onset on the last week of each condition. In a first session, marmosets were exposed to one unfamiliar object during 15 min and 24h later, on the second session, a novel object was added to evaluate RM. Results showed that long days caused a decreased of amplitude and period variance of the CRA, but not short days. Short days decreased the total daily activity and active phase duration. On long days, active phase duration increased due to an advance of activity onset in relation to symmetric days. However, not all subjects started the activity earlier on long days. The activity offset was similar to symmetric days for the majority of marmosets. Results of EA showed that RM was not affected by short or long days, and that the marmosets exhibited a decreased in duration of EA on long days. Frequency and type of calls and frequency of anxiety-like behaviors, staying in nest box and grooming were lower on the first two light hours on long days. Considering the whole active phase of marmosets as we elucidate the results of vocalizations and behaviors, it is possible that these changes in the first two light hours are due to the shifting of temporal distribution of marmoset activities, since some animals did not advance the activity onset on long days. Consequently, the marmosets mean decreased because the sampling was not possible. In conclusion, marmosets synchronized the CRA to the tested photoperiods and as the phase angle varied a lot among marmosets it is suggested that they can use different strategies. Also, long days had an effect on activity-rest cycle and exploratory behaviors

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neuropeptide S (NPS) is an endogenous 20-aminoacid peptide which binds a G protein-coupled receptor named NPSR. This peptidergic system is involved in the modulation of several biological functions, such as locomotion, anxiety, nociception, food intake and motivational behaviors. Studies have shown the participation of NPSR receptors in mediating the hyperlocomotor effects of NPS. A growing body of evidence suggests the participation of adenosinergic, dopaminergic and CRF systems on the hyperlocomotor effects of NPS. Considering that little is known about the role of dopaminergic system in mediating NPS-induced hyperlocomotion, the present study aims to investigate the locomotor actions of intracerebroventricular (icv) NPS in mice pretreated with α-metil-p-tirosine (AMPT, inhibitor of dopamine synthesis), reserpine (inhibitor of dopamine vesicle storage) or sulpiride (D2 receptor antagonist) in the open field test. A distinct group of animals received the same pretreatments described above (AMPT, reserpine or sulpiride) and the hyperlocomotor effects of methylphenidate (dopamine reuptake inhibitor) were investigated in the open field. NPS and methylphenidate increased the mouse locomotor activity. AMPT per se did not change the locomotion of the animals, but it partially reduced the hyperlocomotion of methylphenidate. The pretreatment with AMPT did not affect the psychostimulant effects of NPS. Both reserpine and sulpiride inhibited the stimulatory actions of NPS and methylphenidate. These findings show that the hyperlocomotor effects of methylphenidate, but not NPS, were affected by the pretreatment with AMPT. Furthermore, methylphenidate- and NPS-induced hyperlocomotion was impaired by reserpine and sulpiride pretreatments. Together, data suggests that NPS can increase locomotion even when the synthesis of catecholamines was impaired. Additionally, the hyperlocomotor effects of NPS and methylphenidate depend on monoamines vesicular storaged, mainly dopamine, and on the activation of D2 receptors. The psychostimulant effects of NPS via activation of dopaminergic system display clinical significance on the treatment of diseases which involves dopaminergic pathways, such as Parkinson s disease and drug addiction

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The physiologist H. Selye defined stress as the nonspecific response of the body to any factors that endanger homeostasis (balance of internal environment) of the individual. These factors, agents stressors, are able to activate the Hypothalamic-Pituitary-Adrenal (HPA) axis, thus resulting in the physiological responses to stress by the release of glucocorticoids that leads to psychophysiological changes, including effects on cognitive functions such as learning and memory. When this axis is acutely stimulated occurs a repertoire of behavioral and physiological changes can be adaptive to the individual. Notwithstanding, when the HPA axis is chronically stimulated, changes may favor the development of, such as anxiety disorders. Some drugs used in the clinic for the treatment of anxiety disorders these can exert effects on cognitive function, on the HPA axis and on the anxiety. In this context, the aim of our study was to investigate the effects of administration i.p. acute of diazepam (DZP, 2 mg/kg), buspirone (BUS, 3 mg/kg), mirtazapine (MIR, 10 mg/kg) and fluoxetine (FLU, 10 mg/kg) in male mice submitted to acute restraint stress, and evaluated using plus-maze discriminative avoidance task (PMDAT), which simultaneously evaluates parameters such as learning, memory and anxiety. Our results demonstrated that (1) the administration of DZP and BUS, but not FLU, promoted anxiolytic effects in animals; (2) administration mirtazapine caused sedative effect to animals; (3) in the training session, the animals treated with BUS, MIR and FLU learned the task, on the other hand DZP group showed impairment in learning; (4) in the test session, animals treated with DZP, BUS, and MIR showed deficits in relation to discrimination between the enclosed arms, aversive versus non-aversive arm, demonstrating an impairment in memory, however, animals treated with FLU showed no interference in the retrieval of this memory; (5) acute stress did not interfere in locomotor activity, anxiety, or learning on the learning task, but induced impairment in retrieval memory, and the group treated with FLU did not demonstrated this deficit of memory . These results suggest that acute administration of drugs with anxiolytic and antidepressant activity does not interfere with the learning process this aversive task, but impair its retrieval, as well as the acute restraint stress. However, the antidepressant fluoxetine was able to reverse memory deficits promoted by acute stress, which may suggest that modulation, even acutely serotonergic neurotransmission, by selectively inhibiting the reuptake of this neurotransmitter, interferes on the process of retrieval of an aversive memory

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lithium (Li) is the first choice to treat bipolar disorder, a psychiatric illness characterized by mood oscillations between mania and depression. However, studies have demonstrated that this drug might influence mnemonic process due to its neuroprotector, antiapoptotic and neurogenic effects. The use of Li in the treatment of cognitive deficits caused by brain injury or neurodegenerative disorders have been widely studied, and this drug shows to be effective in preventing or even alleviating the memory impairment. The effects of Li on anxiety and depression are controversial and the relationship of the effects of lithium on memory, anxiety and depression remain unknown. In this context, this study aims to: evaluate the effects of acute and chronic administration of lithium carbonate in aversive memory and anxiety, simultaneously, using the plus maze discriminative avoidance task (PMDAT); test the antidepressant effect of the drug through the forced swimming test (FS) and analyze brainderived neurotrophic factor (BDNF) expression in structures related to memory and emotion. To evaluation of the acute effects, male Wistar rats were submitted to i.p. administration of lithium carbonate (50, 100 or 200 mg/kg) one hour before the training session (PMDAT) or lithium carbonate (50 or 100 mg/kg) one hour before the test session (FS). To evaluation of the chronic effects, the doses administered were 50 or 100 mg/kg or vehicle once a day for 21 days before the beginning of behavioral tasks (PMDAT and FS). Afterwards, the animals were euthanized and their brains removed and submitted to immunohistochemistry procedure to quantify BDNF. The animals that received acute treatment with 100 and 200 mg/kg of Li did not discriminated between the enclosed arms (aversive and non-aversive) in the training session of PMDAT, showing that these animal did not learned the task. This lack of discrimination was also observed in the test session, showing that the animals did not recall the aversive task. We also observed an increased exploration of the open arms of these same groups, indicating an anxiolytic effect. The same groups showed a reduction of locomotor activity, however, this effect does not seem to be related with the anxiolytic effect of the drug. Chronic treatment with Li did not promote alterations on learning or memory processes. Nevertheless, we observed a reduction of open arms exploration by animals treated with 50 mg/kg when compared to the other groups, showing an anxiogenic effect caused by this dose. This effect it is not related to locomotor alterations since there were no alterations in these parameters. Both acute and chronic treatment were ineffective in the FS. Chronic treatment with lithium was not able to modify BDNF expression in hippocampus, amygdala and pre-frontal cortex. These results suggest that acute administration of lithium promote impairments on learning in an aversive task, blocking the occurrence of memory consolidation and retrieval. The reduction of anxiety following acute treatment may have prevented the learning of the aversive task, as it has been found that optimum levels of anxiety are necessary for the occurrence of learning with emotional context. With continued, treatment the animals recover the ability to learn and recall the task. Indeed, they do not show differences in relation to control group, and the lack of alterations on BDNF expression corroborates this result. Possibly, the regimen of treatment used was not able to promote cognitive improvement. Li showed acute anxiolytic effect, however chronic administration 4 promoted the opposite effect. More studies are necessary to clarify the potential beneficial effect of Li on aversive memory

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigated the role of H1 and H2 receptors in anxiety and the retrieval of emotional memory using a Trial 1/Trial 2 (T1/T2) protocol in an elevated plus-maze (EPM). Tests were performed on 2 consecutive days, designated T1 and T2. Before T1, the mice received intraperitoneal injections of saline (SAL), 20 mg/kg zolantidine (ZOL, an H2 receptor antagonist), or 8.0 or 16 mg/kg chlorpheniramine (CPA, an H1 receptor antagonist). After 40 min, they were subjected to the EPM test. In T2 (24 h later), each group was subdivided into two additional groups, and the animals from each group were re-injected with SAL or one of the drugs. In T1, the Student t-test showed no difference between the SAL and ZOL or 8 mg/kg CPA groups with respect to the percentages of open arm entries (%OAE) and open arm time (%OAT). However, administration of CPA at the highest dose of 16 mg/kg decreased %OAE and %OAT, but not locomotor activity, indicating anxiogenic-like behavior. Emotional memory, as revealed by a reduction in open arm exploration between the two trials, was observed in all experimental groups, indicating that ZOL and 8 mg/kg CPA did not affect emotional memory, whereas CPA at the highest dose affected acquisition and consolidation, but not retrieval of memory. Taken together, these results suggest that H1 receptor, but not H2, is implicated in anxiety-like behavior and in emotional memory acquisition and consolidation deficits in mice subjected to EPM testing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The circadian behavior associated with the 24 hours light-dark (LD) cycle (T24) is due to a circadian clock , which in mammals is located in the hypothalamic suprachiasmatic nucleus (SCN). Under experimental conditions in which rats are espoused to a symmetric LD 22h cycle (T22) the two SCN regions, ventrolateral (vl) and dorsomedial (dm), can be functionally isolated, suggesting that each region regulates distinct physiological and behavioral components. The vl region regulates the locomotor activity and slow wave sleep (SWS) rhythms, while the dm region assures the body temperature and paradoxical sleep (PS) rhythms regulation. This research aimed to deepen the knowledge on the functional properties of circadian rhythmicity, specifically about the internal desynchronization process, and its consequences to locomotor activity and body temperature rhythms as well as to the sleep-wake cycle pattern in rats. We applied infrared motion sensors, implanted body temperature sensors and a telemetry system to record electrocorticogram (ECoG) and electromyogram (EMG) in two rat groups. The control group under 24h period LD cycle (T24: 12hL-12hD) to the baseline record and the experimental group under 22h period LD cycle (T22: 11hL- 11hD), in which is known to occur the uncoupling process of the circadian locomotor activity rhythm where the animals show two distinct locomotor activity rhythms: one synchronized to the external LD cycle, and another expressed in free running course, with period greater than 24h. As a result of 22h cycles, characteristic locomotor activity moment appear, that are coincidence moments (T22C) and non coincidence moments (T22NC) which were the main focus or our study. Our results show an increase in locomotor activity, especially in coincidence moments, and the inversion of locomotor activity, body temperature, and sleep-wake cycle patterns in non coincidence moments. We can also observe the increase in SWS and decrease in PS, both in coincidence and non coincidence moments. Probably the increases in locomotor activity as a way to promote the coupling between circadian oscillators generate an increased homeostatic pressure and thus increase SWS, promoting the decreasing in PS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJETIVO: Estabelecer o padrão de normalidade do ritmo de piscar em crianças normais em idade pré-escolar. MÉTODOS: Avaliaram-se 200 crianças de 4 a 6 anos, saudáveis, usando tomada de imagens digitais, nos planos frontal e lateral, em estado de vigília, em posição primária do olhar, estando o objeto de observação localizado na altura da pupila. Para a tomada das imagens foi utilizada uma filmadora Sony Lithium, sendo as mesmas gravadas em fitas 8 mm, transferidas para um computador MacIntosh G4 e processadas pelo programa iMovie, estudando-se: o tempo de abertura e o tempo de fechamento palpebral, o tempo de piscar completo e o ritmo de movimentos palpebrais por minuto, durante 3 minutos. Os resultados foram avaliados por estatística descritiva e gráfico de linhas. RESULTADOS: O piscar completo foi mais freqüente que o incompleto. O ritmo do piscar completo aumenta com o aumento da idade. Para o piscar incompleto, os valores foram semelhantes em todas as idades avaliadas. O tempo de fechamento e de abertura palpebral e o tempo de piscar completo foram semelhantes em meninos e meninas. O tempo de fechamento foi mais lento que o tempo de abertura palpebral. CONCLUSÕES: O ritmo de piscar completo aumenta com a idade. Os tempos de fechamento e de abertura palpebral e o tempo de piscar completo foram semelhantes em ambos os sexos, em todas as idades estudadas, sendo o fechamento mais lento que a abertura palpebral.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

JUSTIFICATIVA E OBJETIVOS: A parada cardíaca per-operatória é um evento grave, e sua incidência em nosso serviço é de 31:10.000 anestesias. O objetivo deste relato é apresentar um caso de parada cardíaca durante anestesia geral em uma paciente submetida a colecistectomia. RELATO do CASO: Paciente feminina, 16 anos, 62 kg, estado físico ASA I, submetida à colecistectomia por via aberta. Midazolam (15 mg) por via oral foi a medicação pré-anestésica. Foi realizadas indução anestésica com sufentanil (50 µg), propofol (150 mg) e atracúrio (30 mg). A anestesia foi mantida com isoflurano e N2O. Após trinta minutos de cirurgia ocorreu bradicardia sinusal revertida com atropina (0,5 mg). Vinte minutos depois, ocorreu outra bradicardia com bloqueio átrio-ventricular de 3º grau evoluindo rapidamente para parada cardíaca (PCR) em assistolia, apesar da administração de atropina (1 mg). As manobras de reanimação foram iniciadas imediatamente, juntamente com a administração de adrenalina (1 mg), com retorno dos batimentos cardíacos espontâneos após aproximadamente cinco minutos da PCR. A cirurgia foi concluída e a paciente manteve-se estável hemodinami- camente. A paciente foi extubada duas horas após o término da cirurgia apresentando-se sonolenta, não contactante, com bom padrão ventilatório e hemodinâmico. Após doze horas de observação na unidade de terapia intensiva (UTI) a paciente apresentava-se agitada e desconexa. Vinte e quatro horas após a PCR a paciente recebeu alta da UTI consciente, orientada, sem queixas e sem déficit neurológico. Recebeu alta hospitalar no 4º dia do pós-operatório. CONCLUSÕES: Diversos fatores podem contribuir para a ocorrência de disritmias e parada cardíaca no per-operatório, destacando-se a estimulação vagal secundária às manobras cirúrgicas. O diagnóstico precoce e o rápido início das manobras de reanimação são de fundamental importância para a boa evolução neurológica desses pacientes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A lesão do núcleo mediano da rafe (NMR) produz sintomas que sugerem validade de face ao episódio maníaco. Esta pesquisa avaliou o efeito do lítio sobre a hiperatividade locomotora induzida por esta lesão. Vinte e um ratos Wistar machos foram submetidos à lesão eletrolítica da região do NMR (LR) e 17 foram submetidos à lesão fictícia (LF). Após recuperação, a atividade locomotora foi avaliada na caixa de atividade (Med Associates/ENV-515). Parte dos animais destes grupos recebeu tratamentos com lítio (47,5 mg/kg/2x dia i.p.) por 10 dias, enquanto o restante foi tratado com salina no mesmo esquema. A reavaliação ao final dos tratamentos demonstrou que o lítio reduziu significantemente a atividade locomotora em relação à avaliação inicial no grupo LR (ANOVA/Bonferroni p < 0,05), tornando-a equivalente aos baixos níveis dos grupos LF. Estes dados sustentam a hipótese de que as manifestações induzidas pela lesão do NMR podem constituir um modelo animal de mania.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wistar dams were exposed to 500 ppm of Pb, as Ph acetate, or 660 ppm Na acetate in drinking water during pregnancy and lactation. Male pups at 23 (weaned) or 70 days (adult) of age were submitted to behavioral evaluation and Pb determination. The behaviors evaluated were: locomotor activity (open-field test), motor coordination (rotarod test), exploratory behavior (holeboard test), anxiety (elevated plus maze and social interaction tests), and learning and memory (shuttle box). Ph levels were measured in the blood and cerebral regions (hippocampus and striatum) of dams and pups. The results of the present report demonstrated that exposure to Ph during pregnancy and lactation induces in weaned pups hyperactivity, decreased exploratory behavior, and impairment of learning and memory. These alterations were observed at blood Ph levels in the range that may be attained in children chronically exposed to low levels of Pb (21 +/- 3 mug/dl). Regarding adults, the results demonstrated that the regimen of exposure adopted induces anxiety in these animals at nondetectable blood Ph levels. (C) 2001 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diethylpropion (DEP) is an amphetamine-like compound used as a coadjutant in the treatment of obesity and which presents toxicological importance as a drug of abuse. This drug causes important behavioral and cardiovascular complications; however, the vascular and behavioral alterations during DEP treatment and withdrawal, have not been determined. We evaluated the effects of DEP treatment and withdrawal on the rat aorta reactivity to noradrenaline, focusing on the endothelium, and the rat behavior during DEP treatment and withdrawal. DEP treatment caused a hyporreactivity to noradrenaline in aorta, reversible after 2 days of withdrawal and abolished by both the endothelium removal and the presence of L-NAME, but not by the presence of indomethacin. Furthermore, DEP treatment increased the general activity of rats. Contrarily, DEP withdrawal caused a decrease in the locomotor activity and an increase in grooming behavior, on the 2nd and 7th days after the interruption of the treatment, respectively. DEP treatment also caused an adaptive vascular response to noradrenaline that seems to be dependent on the increase in the endothelial nitric oxide system activity, but independent of prostaglandins synthesis. The data evidenced chronological differences in the adaptive responses of the vascular and central nervous systems induced by DEP treatment. Finally, a reversion of the adaptive response to DEP was observed in the vascular system during withdrawal, whereas a neuroadaptive process was still present in the central nervous system post-DEP. These findings advance on the understanding of the vascular and behavioral pathophysiological processes involved in the therapeutic and abusive uses of DEP. (C) 2003 Elsevier B.V. (USA). All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The median raphe nucleus (MRN) has been suggested as the origin of a behavioral inhibition system that projects to the septum and hippocampus. Electrical stimulation of this mesencephalic area causes behavioral and autonomic manifestations characteristic of fear such as, freezing, defecation and micturition. In this study we extend these observations by analyzing the behavioral and autonomic responses of rats with lesions in the MRN submitted to a contextual conditioning paradigm. The animals underwent electrolytic or sham lesions of the median raphe nucleus. One day (acute) or 7 days (chronic) later they were tested in an experimental chamber where they received 10 foot-shocks (0.7 mA, 1 s with 20-s interval). The next day, sham and MRN-lesioned animals were tested again either in the same or in a different experimental chamber. During this, the duration of freezing, rearings, bouts of micturition and number of fecal boli were recorded. Sham-operated rats placed in the same chamber showed more freezing than rats exposed to a different context. This freezing behavior was clearly suppressed in rats with acute or chronic lesions in the MRN. MRN lesions also reduced the bouts of micturition and number of fecal boli. These rats showed a reduced number of rearings than sham-lesioned rats. This effect is probably the result of the displacement effect provoked by freezing since no significant differences in the number of rearings could be observed between these animals and the NMR-lesioned rats tested in an open field. This lesion produced higher horizontal locomotor activity in this test than the controls (sham-lesioned rats). These results point to the importance of the median raphe nucleus in the processing of fear conditioning with freezing being the most salient feature of it. Behavioral inhibition is also under control of MRN but its neural substrate seems to be dissociated from that of contextual fear. (C) 1998 Elsevier B.V. B.V.