929 resultados para Función renal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El concepto de función ha evolucionado a través de la historia gracias a la superación de algunos obstáculos adheridos a otros conceptos como la razón, la proporción y la medida. Con base en ello, se prepara el camino para realizar una transposición didáctica y abordar desde allí la noción de función, apoyando el diseño y la implementación de una secuencia de actividades cuyo interés es mostrar que a través una de situación fundamental mediada por el análisis de facturas de servicios públicos, y las fases de la TSD1, es posible acercarse a la noción de función desde los isomorfismos de medida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este documento se presentan los avances del proyecto de investigación “El concepto de función en las matemáticas escolares” realizado en cooperación entre el Programa de Educación Formal para Adultos del ITM y la Universidad de Antioquia. Se retoma la tesis propuesta por Posada & Villa,(2006) en donde se afirma que una didáctica del concepto de función debe abordar los aspectos de la variación, la modelación y los sistemas de representación. Con base en este plateamiento se construye una propuesta didáctica que pretende potenciar el entendimiento de algunos aspectos de la función lineal y cuadrática.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Son muchas las investigaciones que han resaltado la importancia de un conocimiento de la evolución histórica de un concepto matemático en la comprensión de los obstáculos y razonamientos de los estudiantes al interior del aula de clase (Posada & Villa,2006). Con base en este argumento, se presenta en este documento los resultados de una indagación histórica sobre la evolución del concepto de función cuadrática que ofrece al lector algunas pautas que le sean útiles a la hora de diseñar situaciones didácticas que involucren el concepto objeto de este estudio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este articulo reporta el trabajo de estudiantes de noveno a undécimo grado en la solución de un problema de optimización, en donde el modelado juega un papel principal puesto que les permitió llegar a conclusiones y generalizaciones que no fueron posibles a través del lápiz y el papel. Se comentan las estrategias y procedimientos que siguieron los estudiantes y se destaca la importancia de la mediación instrumental a través de la modelación en el proceso de verificación de la solución del problema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se analiza una clase de matemáticas de primero de bachillerato, en cuanto al concepto de límite de una función, bajo el marco teórico del enfoque ontosemiótico de la cognición matemática (Godino, 2002; Godino, Contreras y Font, 2006), utilizando las herramientas de la trayectoria y configuración instruccional, así como las configuraciones de referencia correspondientes a un proceso de estudio. Se discuten los resultados que se obtienen, haciendo explícitos ciertos fenómenos didácticos relacionados con los conflictos semióticos, y se describen los procesos dialógicas presentes en el aula, mostrando la complejidad ontosemiótico de dicho proceso de estudio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La enseñanza-aprendizaje de los objetos básicos del Análisis Matemático, en el nivel de Bachillerato y específicamente los fenómenos didácticos que emergen a lo largo del proceso de instrucción, ha constituido una problemática de investigación, en cuanto a los fenómenos didácticos que emergen a lo largo del proceso de instrucción, hoy vigente y en desarrollo. Tal y como indica Artigue (1998), para avanzar en la investigación han de efectuarse propuestas ligadas a enfoques de tipo ecológico y semiótico, donde las técnicas de reconstrucción del conocimiento matemático den explicaciones sólidas a tales problemas. En este trabajo, que se centra en el objeto: límite, tratamos de aportar una nueva visión del problema centrados en el objeto límite, por medio de un enfoque ontológico-semiótico de la cognición matemática (Godino, 2002).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo resumimos un estudio empírico llevado a cabo con estudiantes de bachillerato con la intención de explorar y describir los distintos significados vinculados al concepto de límite que los estudiantes pueden poner de manifiesto al abordar tareas que involucran la relación entre varios sistemas de representación. Describimos algunos aspectos del lenguaje utilizado por los escolares en sus interpretaciones, profundizando en las concepciones intuitivas a las que dan lugar, seguido de la exploración del manejo de otros sistemas de representación por parte de los escolares como el simbólico a la hora de interpretar gráficas de funciones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El concepto de límite es importante en la educación media, dado que es relevante para introducir otros conceptos como continuidad, derivada, integral, entre otras; de igual manera, sabemos desde diversos autores y desde nuestra experiencia con el aprendizaje de límites, que su enseñanza ha sido algorítmica y tradicional, por lo tanto, se hace necesario replantear este tratamiento y proponer una forma dinámica, para que el estudiante pueda superar algunos de los obstáculos propuestos por Sierpinska (1987). Para esto, proponemos diseñar actividades que busca tratar y/o superar el obstáculo geométrico referido al concepto de límite, basado en un trabajo colaborativo que tendrá lugar en sesiones virtuales en horarios extraclase, que estarán apoyadas por sesiones presenciales (dentro del aula).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabajo está orientado al estudio de las representaciones gráficas de funciones a fin de construir un módulo para docentes que contenga actividades estratégicamente diseñadas en cuanto a metodología y didáctica, de tal forma que los educandos puedan construir los conceptos de forma correcta, siendo conscientes que en el fondo hay un gran objeto matemático, con un enorme campo de aplicación: la función. Para ello, se desarrolla el trabajo de campo en la institución educativa Conrado González Mejía, la cual está ubicada en el barrio Robledo de la ciudad de Medellín.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se presentan en este reporte algunos resultados obtenidos en el aula de matemática a propósito del desarrollo de la situación problema: ¿Qué relación existe entre el ángulo en posición normal y el cociente del lado opuesto y la hipotenusa del triángulo rectángulo? (Fig. 1) Esta actividad se implementó con el objetivo de contribuir al desarrollo del pensamiento variacional de los alumnos de 10º grado jornada de la tarde del Colegio Nacional Loperena de Valledupar, a través de la mediación instrumental de la calculadora algebraica TI-92+ y el uso de las distintas representaciones semióticas para movilizar el aprendizaje de la red conceptual subyacente a la función Seno.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Es nuestro interés en este curso discutir algunos aspectos teóricos y metodológicos relativos a la objetivación del conocimiento matemático, específicamente el relacionado con el concepto de función y con el concepto de parábola. Haremos esta discusión desde algunos resultados obtenidos de la investigación “El conocimiento matemático: desencadenador de interrelaciones en la aula de clase”. En dicho estudio empleamos una metodología a la luz del paradigma cualitativo, bajo un enfoque crítico-dialéctico y desde una investigación colaborativa. Nos apoyamos teóricamente en autores que asumen una perspectiva sociocultural de la Educación y de la Educación Matemática, por ejemplo, Bajtin (2004, 2009), Caraça (1984), Moura (2001, 2010) y Radford (2004, 2006, 2008). Este estudio nos posibilitó comprender, entre otras ideas, que los conceptos que cada alumno objetivó con respecto al objeto función y al objeto parábola no fueron únicos; como no pueden serlo el proceso de objetivación, ni los conceptos mismos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La enseñanza y aprendizaje de temas matemáticos como la proporcionalidad directa usualmente se realiza modelando situaciones “reales” y “cotidianas”. Los profesores de matemáticas asumimos que tales situaciones se comportan en efecto de forma proporcional, pero en la realidad su comportamiento es diferente. Ello nos lleva a la tarea de identificar en la cotidianidad de los estudiantes, situaciones que se dejen modelar a través de funciones lineales, tarea difícilmente realizable, pero altamente formativa.