888 resultados para Doped Zno
Resumo:
ZnO, Epitaxy, Metal organic vapor phase epitaxy, MOCVD, CVD, Semiconductor, Optoelectronics, X-ray diffraction, Cathodoluminescence, Microelectronics
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2009
Resumo:
The objective was to evaluate the effect of ZnO-Functionalised-Sepiolite (ZnO-Sepiolite) to fulfil Zn requirements and health status of weaning piglets. Pre-starter Basal Diet (BD, corn– soybean based, from weaning till 14 days on trial) was calculated to provide 27 mg Zn/kg feed from raw materials and had no added ZnO and no antibiotics or organic acids. Treatments during pre-starter period were: 1) BD+90% of NRC Zn requirements completed with ZnO (ZnO90); 2) BD+90% of NRC Zn requirements completed with ZnO-Sepiolite (ZnOS90); 3) BD+3000 mg ZnO/kg of diet (ZnO3000); 4) BD+150 mg added Zn/kg diet from ZnO-Sepiolite (ZnOS150). The starter feed (corn–soybean based, from 14 till 31 days on trial) was common for all piglets, and met 90% NRC Zn requirements by adding ZnO. Diarrhea affected more than 50% of the animals of ZnO90, ZnOS90 and ZnOS150, and 33% of the ZnO3000 animals. Animals from ZnOS90 tended (Pb0.10) to improve Gain to Feed ratio (G:F) compared to animals from ZnO90 (0.830 kg/kg vs. 0.811 kg/kg for G:F). Performance of animals from ZnO3000 was not significantly different from the other treatments, and was numerically similar to animals from ZnOS90. The inclusion of ZnO at 3000 mg/kg of feed in the pre-starter period numerically decreased P in serum at the end of this period, with no effect on Ca level; normal levels were restored after 2 weeks of feeding the same levels of Zn than other animals. Animals fed ZnOSepiolite diets had numerically higher serum Ca than ZnO90 and ZnO3000 at 12 days and higher than ZnO90 at 28 days. Serum Zn levels were significantly higher for ZnO3000 than the other treatments.
Resumo:
Nitrogen doped silicon (NIDOS) films have been deposited by low-pressure chemical vapor deposition from silane SiH4 and ammonia NH3 at high temperature (750°C) and the influences of the NH3/SiH4 gas ratio on the films deposition rate, refractive index, stoichiometry, microstructure, electrical conductivity, and thermomechanical stress are studied. The chemical species derived from silylene SiH2 into the gaseous phase are shown to be responsible for the deposition of NIDOS and/or (silicon rich) silicon nitride. The competition between these two deposition phenomena leads finally to very high deposition rates (100 nm/min) for low NH3/SiH4 gas ratio (R¿0.1). Moreover, complex variations of NIDOS film properties are evidenced and related to the dual behavior of the nitrogen atom into silicon, either n-type substitutional impurity or insulative intersticial impurity, according to the Si¿N atomic bound. Finally, the use of NIDOS deposition for the realization of microelectromechanical systems is investigated.
Resumo:
High quantum efficiency erbium doped silicon nanocluster (Si-NC:Er) light emitting diodes (LEDs) were grown by low-pressure chemical vapor deposition (LPCVD) in a complementary metal-oxide-semiconductor (CMOS) line. Erbium (Er) excitation mechanisms under direct current (DC) and bipolar pulsed electrical injection were studied in a broad range of excitation voltages and frequencies. Under DC excitation, Fowler-Nordheim tunneling of electrons is mediated by Er-related trap states and electroluminescence originates from impact excitation of Er ions. When the bipolar pulsed electrical injection is used, the electron transport and Er excitation mechanism change. Sequential injection of electrons and holes into silicon nanoclusters takes place and nonradiative energy transfer to Er ions is observed. This mechanism occurs in a range of lower driving voltages than those observed in DC and injection frequencies higher than the Er emission rate.
Resumo:
A deep understanding of the recombination dynamics of ZnO nanowires NWs is a natural step for a precise design of on-demand nanostructures based on this material system. In this work we investigate the influence of finite-size on the recombination dynamics of the neutral bound exciton around 3.365 eV for ZnO NWs with different diameters. We demonstrate that the lifetime of this excitonic transition decreases with increasing the surface-to-volume ratio due to a surface induced recombination process. Furthermore, we have observed two broad transitions around 3.341 and 3.314 eV, which were identified as surface states by studying the dependence of their life time and intensitiy with the NWs dimensions.
Resumo:
A novel NO2 sensor based on (CdO)x(ZnO)1-x mixed-oxide thin films deposited by the spray pyrolysis technique is developed. The sensor response to 3-ppm NO2 is studied in the range 50°C-350°C for three different film compositions. The device is also tested for other harmful gases, such as CO (300 ppm) and CH4 (3000 ppm). The sensor response to these reducing gases is different at different temperatures varying from the response typical for the p-type semiconductor to that typical for the n-type semiconductor. Satisfactory response to NO2 and dynamic behavior at 230°C, as well as low resistivity, are observed for the mixed-oxide film with 30% Cd. The response to interfering gas is poor at working temperature (230°C). On the basis of this study, a possible sensing mechanism is proposed.
Resumo:
In the framework of a finite-range density-functional theory, we compute the response of 4HeN clusters doped with a rare-gas molecule. For this purpose, the mean field for the 4He atoms, their wave functions and effective quasiparticle interaction, are self-consistently calculated for a variety of particle numbers in the cluster. The response function is then evaluated for several multipolarities in each drop and the collective states are consequently located from the peaks of the strength function. The spectra of pure droplets approach those previously extracted with a similar algorithm resorting to a zero-range density functional. The spectra of doped clusters are sensitive to the presence of the impurity and are worth a future systematic investigation.