566 resultados para Bimodal
Resumo:
The growth of InAs quantum dots on vicinal GaAs (100) Substrates was systematically studied using low-pressure metalorganic chemical vapor deposition (MOCVD). The dots showed a clear bimodal size distribution on vicinal substrates. The way of evolution of this bimodal size distribution was studied as a function of growth temperature, InAs layer thickness and InAs deposition rate. The optical properties of dots grown on vicinal substrates were also studied by photoluminescence (PL). It was found that, compared with dots on exact substrates, dots on vicinal substrates had better optical properties such as a narrower PL line width, a longer emission wavelength, and a larger PL intensity. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The size and shape Evolution of self-assembled InAs quantum dots (QDs) influenced by 2.0-ML InAs seed layer has been systematically investigated for 2.0, 2.5, and 2.9-ML deposition on GaAs(1 0 0) substrate. Based on comparisons with the evolution of InAs islands on single layer samples at late growth stage, the bimodal size distribution of InAs islands at 2.5-ML InAs coverage and the formation of larger InAs quantum dots at 2.9-ML deposition have been observed on the second InAs layer. The further cross-sectional transmission electron microscopy measurement indicates the larger InAs QDs: at 2.9-ML deposition on the second layer are free of dislocation. In addition, the interpretations for the size and shape evolution of InAs/GaAs QDs on the second layer will be presented. (C) 2001 Elsevier Science B.V. All lights reserved.
Resumo:
Ge/Si multilayer structures with a bimodal distribution of the island spacing in the first layer have been investigated by atomic-force microscopy and transmission electron microscopy. Besides the vertical alignment, some oblique alignments of stacked islands are observed. The presence of the elastic interaction between islands is responsible for the oblique alignment of stacked islands. (C) 2000 American Institute of Physics. [S0003-6951(00)04644-1].
Resumo:
In this work we report the photoluminescence (PL) and interband absorption study of Si-modulation-doped multilayer InAs/GaAs quantum dots grown by molecular beam epitaxy (MBE) on (100) oriented GaAs substrates. Low-temperature PL shows a distinctive double-peak feature. Power-dependent PL and transmission electron microscopy (TEM) confirm that they stem from the ground states emission of islands of bimodal size distribution. Temperature-dependent PL study indicates that the family of small dots is ensemble effect dominated while the family of large dots is likely to be dominated by the intrinsic property of single quantum dots (QDs). The temperature-dependent PL and interband absorption measurements are discussed in terms of thermalized redistribution of the carriers among groups of QDs of different sizes in the ensemble. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Red-emission at similar to 640 nm from self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots grown on GaAs substrate by molecular beam epitaxy (MBE) has been demonstrated. We obtained a double-peak structure of photoluminescence (PL) spectra from quantum dots. An atomic force micrograph (AFM) image for uncapped sample also shows a bimodal distribution of dot sizes. From the temperature and excitation intensity dependence of PL spectra, we found that the double-peak structure of PL spectra from quantum dots was strongly correlated to the two predominant quantum dot families. Taking into account quantum-size effect on the peak energy, we propose that the high (low) energy peak results from a smaller (larger) dot family, and this result is identical with the statistical distribution of dot lateral size from the AFM image.
Resumo:
Evolution of the height distribution of Ge islands during in situ annealing of Ge films on Si(1 0 0) has been studied. Island height is found to have a bimodal distribution. The standard deviation of the island height divided by the mean island height, for the mode of larger island size is more than that for the other mode. We suggest that the presence of Ehrlich-Schwoebel barriers, combined with the misfit strain, can lead to the bimodal distribution of island size, the mode of larger island size having narrower base size distribution, but wider height distribution for Ge islands on Si(1 0 0). The bimodal distribution of island size could be stable due to kinetics without necessarily regarding it as minimum-energy configuration. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Molecular beam epitaxy has been used for growing InGaAs self-assembled quantum dots (QDs) in InAlAs on an InP(001) substrate. Nominal deposition of 9.6 monolayers of In0.9Ga0.1As results in QDs of similar to 6.5 nm high with an areal density of 3.3 X 10(11) cm(-2). Conspicuous bimodal size distribution is identified, and is responsible for the observed QDs photoluminescence (PL) emission with two peaks at 0.627 and 0.657 eV. Good agreement is achieved between the observed PL peak energies and calculated results. (C) 1999 American Institute of Physics. [S00218979(99)00101-2].
Resumo:
Atomic force microscopy and photoluminescence spectroscopy (PL) has been used to study asymmetric bilayer InAs quantum dot (QD) structures grow by molecular-beam epitaxy on GaAs (001) substrates. The two InAs layers were separated by a 7-nm-thick GaAs spacer layer and were grown at different substrate temperature. We took advantage of the intrinsic nonuniformity of the molecular beams to grow the seed layer with an average InAs coverage of 2.0 ML. Then the seed layer thickness could be divided into three areas: below, around and above the critical thickness of the 2D-3D transition along the 11101 direction of the substrate. Correspondingly, the nucleation mechanisms of the upper InAs layer (UIL) could be also divided into three areas: temperature-controlled, competition between temperature-controlled and strain-induced, and strain-induced (template-controlled) nucleation. Small quantum dots (QDs) with a large density around 5 x 10(10) cm(-2) are found in the temperature-controlled nucleation area. The QD size distributions undergo a bimodal to a unimodal transition with decreasing QD densities in the strain-induced nucleation area, where the QD densities vary following that of the seed layer (templating effect). The optimum QD density with the UIL thickness fixed at 2.4 ML is shown to be around 1.5 x 10(10) cm(-2), for which the QD size distribution is unimodal and PL emission peaks at the longest wavelength. The QDs in the in-between area exhibit a broad size distribution with small QDs and strain-induced large QDs coexisting.
Resumo:
Two types of SiO2 with different mesopore size and HZSM-5 zeolite were used to prepare hybrid supported cobalt-based catalysts. The textual and structural properties of the catalysts were studied using N-2 physisorption, X-ray diffraction (XRD), and H-2 temperature-programmed reduction (TPR) techniques. Fischer-Tropsch synthesis (FTS) performances of the catalysts were carried out in a fixed-bed reactor. The combination effects of the meso- and micropores of the supports as well as the interaction between supports and cobalt particles on FTS activity are discussed. The results indicate that the catalyst supported on the tailor-made SiO2 and HZSM-5 hybrid maintained both meso- and micropore pores during the preparation process without HZSM-5 particles agglomerating. The mesopores provided quick mass transfer channels, while the micropores contributed to high metal dispersion and accelerated hydrocracking/hydroisomerization reaction rate. High CO conversion of 83.9% and selectivity to gasoline-range hydrocarbons (C-5-C-12) of 55%, including more than 10% isoparaffins, were achieved simultaneously on this type of catalyst.
Resumo:
Photoluminescence and time-resolved photoluminescence were used to study the heterointerface configuration in GaAs/AlGaAs quantum wells grown by molecular-beam epitaxy with growth interruption. Photoluminescence spectra of the growth-interrupted sample are characterized by multiplet structures, with energy separation corresponding to a 0.8 monolayer difference in well width, rather than 1 monolayer as expected from the ''atomically smooth island'' picture. By analyzing the thermal transfer process of the photogenerated carriers and luminescence decay process, we further exploit the exciton localization at the interface microroughness superimposed on the extended growth islands. The lateral size of the microroughness in our sample was estimated to be 5 nm, less than the exciton diameter of 15 nm. Our results strongly support the bimodal roughness model proposed by Warwick et al. [Appl. Phys. Lett. 56, 2666 (1990)]. (C) 1996 American Institute of Physics.
Resumo:
The size and shape Evolution of self-assembled InAs quantum dots (QDs) influenced by 2.0-ML InAs seed layer has been systematically investigated for 2.0, 2.5, and 2.9-ML deposition on GaAs(1 0 0) substrate. Based on comparisons with the evolution of InAs islands on single layer samples at late growth stage, the bimodal size distribution of InAs islands at 2.5-ML InAs coverage and the formation of larger InAs quantum dots at 2.9-ML deposition have been observed on the second InAs layer. The further cross-sectional transmission electron microscopy measurement indicates the larger InAs QDs: at 2.9-ML deposition on the second layer are free of dislocation. In addition, the interpretations for the size and shape evolution of InAs/GaAs QDs on the second layer will be presented. (C) 2001 Elsevier Science B.V. All lights reserved.
Resumo:
Red-emission at similar to 640 nm from self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots grown on GaAs substrate by molecular beam epitaxy (MBE) has been demonstrated. We obtained a double-peak structure of photoluminescence (PL) spectra from quantum dots. An atomic force micrograph (AFM) image for uncapped sample also shows a bimodal distribution of dot sizes. From the temperature and excitation intensity dependence of PL spectra, we found that the double-peak structure of PL spectra from quantum dots was strongly correlated to the two predominant quantum dot families. Taking into account quantum-size effect on the peak energy, we propose that the high (low) energy peak results from a smaller (larger) dot family, and this result is identical with the statistical distribution of dot lateral size from the AFM image.