965 resultados para 2nd-order perturbation-theory
Resumo:
Diese Arbeit untersucht die longitudinale und transversaleStrahldynamik am Mainzer Mikrotron MAMI. Die gemessenen Abbildungseigenschaften werden mit den Design-Rechnungen verglichen. Dadurch konnte die Strahlqualitaet von MAMI B und das Design der neuen HDSM Mikrotronstufe verbessert werden. Es wurde eine Stoerungsrechnung formuliert, um die 6-DAbbildungsmatrix entlang der Beschleunigungsstrecke zu berechnen. Ausgehend von der linearisierten Hamilton Funktion wird die Transfermatrix M in eine unendliche Summe ueber Matrizen M(n) zerlegt, die jeweils eine n-fache Wechselwirkung des Strahls mit dem Quadrupolanteil des Fuehrungsfeldes darstellen. Dank des tieferen Einblicks in die Auswirkung von Feldfehlern konnte damit das Mikrotron-Modell leicht an die gemessenen Transfermatrizen angepasst werden. Ferner wurde die Identifizierung und Korrektur anti-symmetrischer Feldfehler in den Mikrotron-Dipolen untersucht. Es wurde ein Messverfahren entwickelt, um kleine Feldkomponenten in der Bahnebene von der Groessenordnung 10E-3 zu erkennen. Das vorgeschlagene Verfahren wurde mit Hilfe des Simulationsprogramms TOSCA ausgetestet. Schliesslich wurde die Stabilitaet der Longitudinaloptik verbessert. Dadurch konnte eine hochpraezise Energiestabi-lisierung verwirklicht werden. Bei 855 MeV Strahlenergie wird eine Stabilitaet von etwa 10E-6 erreicht.
Resumo:
The main part of this thesis describes a method of calculating the massless two-loop two-point function which allows expanding the integral up to an arbitrary order in the dimensional regularization parameter epsilon by rewriting it as a double Mellin-Barnes integral. Closing the contour and collecting the residues then transforms this integral into a form that enables us to utilize S. Weinzierl's computer library nestedsums. We could show that multiple zeta values and rational numbers are sufficient for expanding the massless two-loop two-point function to all orders in epsilon. We then use the Hopf algebra of Feynman diagrams and its antipode, to investigate the appearance of Riemann's zeta function in counterterms of Feynman diagrams in massless Yukawa theory and massless QED. The class of Feynman diagrams we consider consists of graphs built from primitive one-loop diagrams and the non-planar vertex correction, where the vertex corrections only depend on one external momentum. We showed the absence of powers of pi in the counterterms of the non-planar vertex correction and diagrams built by shuffling it with the one-loop vertex correction. We also found the invariance of some coefficients of zeta functions under a change of momentum flow through these vertex corrections.
Resumo:
The quark condensate is a fundamental free parameter of Chiral Perturbation Theory ($chi PT$), since it determines the relative size of the mass and momentum terms in the power expansion. In order to confirm or contradict the assumption of a large quark condensate, on which $chi PT$ is based, experimental tests are needed. In particular, the $S$-wave $pipi$ scattering lengths $a_0^0$ and $a_0^2$ can be predicted precisely within $chi PT$ as a function of this parameter and can be measured very cleanly in the decay $K^{pm} to pi^{+} pi^{-} e^{pm} stackrel{mbox{tiny(---)}}{nu_e}$ ($K_{e4}$). About one third of the data collected in 2003 and 2004 by the NA48/2 experiment were analysed and 342,859 $K_{e4}$ candidates were selected. The background contamination in the sample could be reduced down to 0.3% and it could be estimated directly from the data, by selecting events with the same signature as $K_{e4}$, but requiring for the electron the opposite charge with respect to the kaon, the so-called ``wrong sign'' events. This is a clean background sample, since the kaon decay with $Delta S=-Delta Q$, that would be the only source of signal, can only take place through two weak decays and is therefore strongly suppressed. The Cabibbo-Maksymowicz variables, used to describe the kinematics of the decay, were computed under the assumption of a fixed kaon momentum of 60 GeV/$c$ along the $z$ axis, so that the neutrino momentum could be obtained without ambiguity. The measurement of the form factors and of the $pipi$ scattering length $a_0^0$ was performed in a single step by comparing the five-dimensional distributions of data and MC in the kinematic variables. The MC distributions were corrected in order to properly take into account the trigger and selection efficiencies of the data and the background contamination. The following parameter values were obtained from a binned maximum likelihood fit, where $a_0^2$ was expressed as a function of $a_0^0$ according to the prediction of chiral perturbation theory: f'_s/f_s = 0.133+- 0.013(stat)+- 0.026(syst) f''_s/f_s = -0.041+- 0.013(stat)+- 0.020(syst) f_e/f_s = 0.221+- 0.051(stat)+- 0.105(syst) f'_e/f_s = -0.459+- 0.170(stat)+- 0.316(syst) tilde{f_p}/f_s = -0.112+- 0.013(stat)+- 0.023(syst) g_p/f_s = 0.892+- 0.012(stat)+- 0.025(syst) g'_p/f_s = 0.114+- 0.015(stat)+- 0.022(syst) h_p/f_s = -0.380+- 0.028(stat)+- 0.050(syst) a_0^0 = 0.246+- 0.009(stat)+- 0.012(syst)}+- 0.002(theor), where the statistical uncertainty only includes the effect of the data statistics and the theoretical uncertainty is due to the width of the allowed band for $a_0^2$.
Resumo:
In dieser Arbeit wurde die elektromagnetische Pionproduktion unter der Annahme der Isospinsymmetrie der starken Wechselwirkung im Rahmen der manifest Lorentz-invarianten chiralen Störungstheorie in einer Einschleifenrechnung bis zur Ordnung vier untersucht. Dazu wurden auf der Grundlage des Mathematica-Pakets FeynCalc Algorithmen zur Berechnung der Pionproduktionsamplitude entwickelt. Bis einschließlich der Ordnung vier tragen insgesamt 105 Feynmandiagramme bei, die sich in 20 Baumdiagramme und 85 Schleifendiagramme unterteilen lassen. Von den 20 Baumdiagrammen wiederum sind 16 als Polterme und vier als Kontaktgraphen zu klassifizieren; bei den Schleifendiagrammen tragen 50 Diagramme ab der dritten Ordnung und 35 Diagramme ab der vierten Ordnung bei. In der Einphotonaustauschnäherung lässt sich die Pionproduktionsamplitude als ein Produkt des Polarisationsvektors des (virtuellen) Photons und des Übergangsstrommatrixelements parametrisieren, wobei letzteres alle Abhängigkeiten der starken Wechselwirkung beinhaltet und wo somit die chirale Störungstheorie ihren Eingang findet. Der Polarisationsvektor hingegen hängt von dem leptonischen Vertex und dem Photonpropagator ab und ist aus der QED bekannt. Weiterhin lässt sich das Übergangsstrommatrixelement in sechs eichinvariante Amplituden zerlegen, die sich im Rahmen der Isospinsymmetrie jeweils wiederum in drei Isospinamplituden zerlegen lassen. Linearkombinationen dieser Isospinamplituden erlauben letztlich die Beschreibung der physikalischen Amplituden. Die in dieser Rechnung auftretenden Einschleifenintegrale wurden numerisch mittels des Programms LoopTools berechnet. Im Fall tensorieller Integrale erfolgte zunächst eine Zerlegung gemäß der Methode von Passarino und Veltman. Da die somit erhaltenen Ergebnisse jedoch i.a. noch nicht das chirale Zählschema erfüllen, wurde die entsprechende Renormierung mittels der reformulierten Infrarotregularisierung vorgenommen. Zu diesem Zweck wurde ein Verfahren entwickelt, welches die Abzugsterme automatisiert bestimmt. Die schließlich erhaltenen Isospinamplituden wurden in das Programm MAID eingebaut. In diesem Programm wurden als Test (Ergebnisse bis Ordnung drei) die s-Wellenmultipole E_{0+} und L_{0+} in der Schwellenregion berechnet. Die Ergebnisse wurden sowohl mit Messdaten als auch mit den Resultaten des "klassischen" MAID verglichen, wobei sich i. a. gute Übereinstimmungen im Rahmen der Fehler ergaben.
Resumo:
Coupled-cluster theory provides one of the most successful concepts in electronic-structure theory. This work covers the parallelization of coupled-cluster energies, gradients, and second derivatives and its application to selected large-scale chemical problems, beside the more practical aspects such as the publication and support of the quantum-chemistry package ACES II MAB and the design and development of a computational environment optimized for coupled-cluster calculations. The main objective of this thesis was to extend the range of applicability of coupled-cluster models to larger molecular systems and their properties and therefore to bring large-scale coupled-cluster calculations into day-to-day routine of computational chemistry. A straightforward strategy for the parallelization of CCSD and CCSD(T) energies, gradients, and second derivatives has been outlined and implemented for closed-shell and open-shell references. Starting from the highly efficient serial implementation of the ACES II MAB computer code an adaptation for affordable workstation clusters has been obtained by parallelizing the most time-consuming steps of the algorithms. Benchmark calculations for systems with up to 1300 basis functions and the presented applications show that the resulting algorithm for energies, gradients and second derivatives at the CCSD and CCSD(T) level of theory exhibits good scaling with the number of processors and substantially extends the range of applicability. Within the framework of the ’High accuracy Extrapolated Ab initio Thermochemistry’ (HEAT) protocols effects of increased basis-set size and higher excitations in the coupled- cluster expansion were investigated. The HEAT scheme was generalized for molecules containing second-row atoms in the case of vinyl chloride. This allowed the different experimental reported values to be discriminated. In the case of the benzene molecule it was shown that even for molecules of this size chemical accuracy can be achieved. Near-quantitative agreement with experiment (about 2 ppm deviation) for the prediction of fluorine-19 nuclear magnetic shielding constants can be achieved by employing the CCSD(T) model together with large basis sets at accurate equilibrium geometries if vibrational averaging and temperature corrections via second-order vibrational perturbation theory are considered. Applying a very similar level of theory for the calculation of the carbon-13 NMR chemical shifts of benzene resulted in quantitative agreement with experimental gas-phase data. The NMR chemical shift study for the bridgehead 1-adamantyl cation at the CCSD(T) level resolved earlier discrepancies of lower-level theoretical treatment. The equilibrium structure of diacetylene has been determined based on the combination of experimental rotational constants of thirteen isotopic species and zero-point vibrational corrections calculated at various quantum-chemical levels. These empirical equilibrium structures agree to within 0.1 pm irrespective of the theoretical level employed. High-level quantum-chemical calculations on the hyperfine structure parameters of the cyanopolyynes were found to be in excellent agreement with experiment. Finally, the theoretically most accurate determination of the molecular equilibrium structure of ferrocene to date is presented.
Resumo:
Die vorliegende Dissertation behandelt den anomalen Sektor bzw. den Sektor ungerader innerer Parität in mesonischer chiraler Störungsrechnung (mesonische ChPT) bis zur chiralen Ordnung O(q^6). Auf eine Einführung in die Quantenchromodynamik (QCD) und ihrer Verknüpfung mit der chiralen Symmetrie folgt die Betrachtung der mesonischen ChPT im Sektor gerader sowie ungerader innerer Parität bis zur Ordnung O(q^4). Der sogenannte Wess-Zumino-Witten Term, welcher den Einfluss der axialen Anomalie bezogen auf die ChPT widerspiegelt, wird studiert. Anschließend wird die allgemeinste Lagrangedichte der Ordnung O(q^6) im Sektor ungerader innerer Parität detailiert analysiert. Sie enthält in ihrer SU(3)-Formulierung 23 Niederenergiekonstanten(low-energy constant=LEC). Aus Sicht der ChPT sind diese LECs freie Parameter, die auf irgendeine Art und Weise fixiert werden müssen. Es wird herausgearbeitet, bei welchen Prozessen und in welchen Kombinationen die jeweiligen LECs auftreten. Daraufhin wird versucht so viele dieser LECs wie möglich mittels Vektormesondominanz (VMD) sowie experimenteller Daten abzuschätzen und anzupassen. Hierfür wird zuerst die Vorgehensweise einer konsistenten Rechnung im Sektor ungerader innerer Parität bis zur Ordnung O(q^6) studiert, gefolgt von der Berechnung von insgesamt vierzehn geeigneten Prozessen im Rahmen der ChPT bis zur Ordnung O(q^6). Unter Verwendung experimenteller Daten werden dreizehn der LECs angepasst, wobei gegenwärtig nicht bei allen betrachteten Prozessen experimentelle Daten zur Verfügung stehen. Die Ergebnisse werden diskutiert und Unterschiede bzw. Übereinstimmungen mit anderen Rechnungen herausgearbeitet. Zusammenfassend erhält man einen umfassenden Einblick in den Sektor ungerader innerer Parität in mesonischer ChPT bis zur Ordnung O(q^6).
Resumo:
Quantenchemische Untersuchungen von Atomen und Molekülen haben in den letzten Jahren durch die systematische Erweiterung der Methoden und Computerresourcen zunehmend für die Interpretation und Vorhersage experimenteller Ergebnisse an Bedeutung gewonnen. Relativistische Effekte in der Chemie werden zum Beispiel für die gelbe Farbe von Gold und den flüssigen Aggregatzustand von Quecksilber verantwortlich gemacht und müssen daher in quantenchemischen Rechnungen berücksichtigt werden. Relativistische Effekte sind bei leichten Elementen oft so klein, daß sie in vielen quantenchemischen Betrachtungen vernachlässigt werden. Dennoch sind es gerade diese Beiträge, die verbleibende Abweichungen von noch so genauen nichtrelativistischen Rechnungen von ebenso genauen experimentellen Ergebnissen ausmachen können. Relativistische Effekte können auf viele Arten in quantenchemischen Rechnungen berücksichtigt werden. Eine Möglichkeit ist die Störungstheorie. Ein derartiger Ansatz ist die Mass-velocity-Darwin-Näherung, ein anderer die Direkte Störungstheorie. Hier entspricht die relativistische Energiekorrektur erster Ordnung der ersten Ableitung der Energie nach einem relativistischen Störparameter. Für eine Bestimmung der Gleichgewichtsstruktur eines Moleküls müssen die Kräfte auf die Atomkerne bestimmt werden. Diese entsprechen einer ersten Ableitung der Gesamtenergie nach den Kernkoordinaten. Eine Einbeziehung der relativistischen Effekte auf diese Kräfte erfordert daher die gemischte zweite Ableitung der Energie nach dem relativistischen Störparameter und den Kernkoordinaten. Diese relativistischen Korrekturen wurden in dem quantenchemischen Programmpaket ACES2 implementiert. Ein Resultat dieser Arbeit ist, daß nun erstmalig eine Implementierung analytischer Gradienten für die Berechnung relativistischer Korrekturen zu Strukturparametern mit Hilfe der relativistischen Störungstheorie für den Coupled-Cluster-Ansatz bereit steht. Die Coupled-Cluster-Theorie eignet sich besonders gut für die hochgenaue Vorhersage von molekularen Eigenschaften, wie der Gleichgewichtsstruktur. Im Rahmen dieser Arbeit wurde die Basissatzabhängigkeit der relativistischen Beiträge zu Energien, Strukturparametern und harmonischen Schwingungsfrequenzen im Detail untersucht. Für die hier untersuchten Moleküle sind die relativistischen Effekte und Effekte aufgrund der Elektronenkorrelation nicht additiv, so verkürzt die Berücksichtigung relativistischer Effekte bei Hartree-Fock-Rechnungen die Bindung in den Hydrogenhalogeniden, während die Einbeziehung der Elektronenkorrelation durch CCSD(T)-Rechnungen zu einer verlängerten Bindung im Fluorwasserstoff und weniger stark ausgeprägten Korrekturen im Chlor- und Bromwasserstoff führt. Für die anderen hier untersuchten mehratomigen Moleküle findet sich kein einheitlicher Trend; dies unterstreicht die Notwendigkeit expliziter Rechnungen. Damit steht ein leistungsfähiges und vielseitiges Werkzeug für die Berechnung relativistischer Korrekturen auf verschiedenste molekulare Eigenschaften zur Verfügung, das mit modernen, systematisch verbesserbaren quantenchemischen Methoden verknüpft ist. Hiermit ist es möglich, hochgenaue Rechnungen zur Vorhersage und Interpretation von Experimenten durchzuführen.
Resumo:
The goal of this thesis was an experimental test of an effective theory of strong interactions at low energy, called Chiral Perturbation Theory (ChPT). Weak decays of kaon mesons provide such a test. In particular, K± → π±γγ decays are interesting because there is no tree-level O(p2) contribution in ChPT, and the leading contributions start at O(p4). At this order, these decays include one undetermined coupling constant, ĉ. Both the branching ratio and the spectrum shape of K± → π±γγ decays are sensitive to this parameter. O(p6) contributions to K± → π±γγ ChPT predict a 30-40% increase in the branching ratio. From the measurement of the branching ratio and spectrum shape of K± → π±γγ decays, it is possible to determine a model dependent value of ĉ and also to examine whether the O(p6) corrections are necessary and enough to explain the rate.About 40% of the data collected in the year 2003 by the NA48/2 experiment have been analyzed and 908 K± → π±γγ candidates with about 8% background contamination have been selected in the region with z = mγγ2/mK2 ≥ 0.2. Using 5,750,121 selected K± → π±π0 decays as normalization channel, a model independent differential branching ratio of K± → π±γγ has been measured to be:BR(K± → π±γγ, z ≥ 0.2) = (1.018 ± 0.038stat ± 0.039syst ± 0.004ext) ∙10-6. From the fit to the O(p6) ChPT prediction of the measured branching ratio and the shape of the z-spectrum, a value of ĉ = 1.54 ± 0.15stat ± 0.18syst has been extracted. Using the measured ĉ value and the O(p6) ChPT prediction, the branching ratio for z =mγγ2/mK2 <0.2 was computed and added to the measured result. The value obtained for the total branching ratio is:BR(K± → π±γγ) = (1.055 ± 0.038stat ± 0.039syst ± 0.004ext + 0.003ĉ -0.002ĉ) ∙10-6, where the last error reflects the uncertainty on ĉ.The branching ratio result presented here agrees with previous experimental results, improving the precision of the measurement by at least a factor of five. The precision on the ĉ measurement has been improved by approximately a factor of three. A slight disagreement with the O(p6) ChPT branching ratio prediction as a function of ĉ has been observed. This mightrnbe due to the possible existence of non-negligible terms not yet included in the theory. Within the scope of this thesis, η-η' mixing effects in O(p4) ChPT have also been measured.
Resumo:
Während das Standardmodell der Elementarteilchenphysik eine konsistente, renormierbare Quantenfeldtheorie dreier der vier bekannten Wechselwirkungen darstellt, bleibt die Quantisierung der Gravitation ein bislang ungelöstes Problem. In den letzten Jahren haben sich jedoch Hinweise ergeben, nach denen metrische Gravitation asymptotisch sicher ist. Das bedeutet, daß sich auch für diese Wechselwirkung eine Quantenfeldtheorie konstruieren läßt. Diese ist dann in einem verallgemeinerten Sinne renormierbar, der nicht mehr explizit Bezug auf die Störungstheorie nimmt. Zudem sagt dieser Zugang, der auf der Wilsonschen Renormierungsgruppe beruht, die korrekte mikroskopische Wirkung der Theorie voraus. Klassisch ist metrische Gravitation auf dem Niveau der Vakuumfeldgleichungen äquivalent zur Einstein-Cartan-Theorie, die das Vielbein und den Spinzusammenhang als fundamentale Variablen verwendet. Diese Theorie besitzt allerdings mehr Freiheitsgrade, eine größere Eichgruppe, und die zugrundeliegende Wirkung ist von erster Ordnung. Alle diese Eigenschaften erschweren eine zur metrischen Gravitation analoge Behandlung.rnrnIm Rahmen dieser Arbeit wird eine dreidimensionale Trunkierung von der Art einer verallgemeinerten Hilbert-Palatini-Wirkung untersucht, die neben dem Laufen der Newton-Konstante und der kosmologischen Konstante auch die Renormierung des Immirzi-Parameters erfaßt. Trotz der angedeuteten Schwierigkeiten war es möglich, das Spektrum des freien Hilbert-Palatini-Propagators analytisch zu berechnen. Auf dessen Grundlage wird eine Flußgleichung vom Propertime-Typ konstruiert. Zudem werden geeignete Eichbedingungen gewählt und detailliert analysiert. Dabei macht die Struktur der Eichgruppe eine Kovariantisierung der Eichtransformationen erforderlich. Der resultierende Fluß wird für verschiedene Regularisierungsschemata und Eichparameter untersucht. Dies liefert auch im Einstein-Cartan-Zugang berzeugende Hinweise auf asymptotische Sicherheit und damit auf die mögliche Existenz einer mathematisch konsistenten und prädiktiven fundamentalen Quantentheorie der Gravitation. Insbesondere findet man ein Paar nicht-Gaußscher Fixpunkte, das Anti-Screening aufweist. An diesen sind die Newton-Konstante und die kosmologische Konstante jeweils relevante Kopplungen, wohingegen der Immirzi-Parameter an einem Fixpunkt irrelevant und an dem anderen relevant ist. Zudem ist die Beta-Funktion des Immirzi-Parameters von bemerkenswert einfacher Form. Die Resultate sind robust gegenüber Variationen des Regularisierungsschemas. Allerdings sollten zukünftige Untersuchungen die bestehenden Eichabhängigkeiten reduzieren.
Resumo:
The conventional way to calculate hard scattering processes in perturbation theory using Feynman diagrams is not efficient enough to calculate all necessary processes - for example for the Large Hadron Collider - to a sufficient precision. Two alternatives to order-by-order calculations are studied in this thesis.rnrnIn the first part we compare the numerical implementations of four different recursive methods for the efficient computation of Born gluon amplitudes: Berends-Giele recurrence relations and recursive calculations with scalar diagrams, with maximal helicity violating vertices and with shifted momenta. From the four methods considered, the Berends-Giele method performs best, if the number of external partons is eight or bigger. However, for less than eight external partons, the recursion relation with shifted momenta offers the best performance. When investigating the numerical stability and accuracy, we found that all methods give satisfactory results.rnrnIn the second part of this thesis we present an implementation of a parton shower algorithm based on the dipole formalism. The formalism treats initial- and final-state partons on the same footing. The shower algorithm can be used for hadron colliders and electron-positron colliders. Also massive partons in the final state were included in the shower algorithm. Finally, we studied numerical results for an electron-positron collider, the Tevatron and the Large Hadron Collider.
Resumo:
In der vorliegenden Arbeit werden Photopionproduktion (PPP) und Elektropionproduktion (EPP) im Rahmen der manifest lorentzinvarianten baryonischen chiralen Störungstheorie untersucht. Dabei werden zwei verschiedene Ansätze verfolgt. Zum einen wird eine Rechnung auf Einschleifenniveau bis zur chiralen Ordnung O(q^4) mit Pionen und Nukleonen als Freiheitsgrade durchgeführt, um die Energieabhängigkeit der Reaktionen über einen möglichst großen Bereich zu beschreiben. Um die Abhängigkeit von der Photonvirtualität in der EPP zu verbessern, werden zum anderen in einer zweiten Rechnung Vektormesonen in die Theorie einbezogen. Diese Rechnung wird bis zur chiralen Ordnung O(q^3) auf Einschleifenniveau durchgeführt. rnrnVon den vier physikalischen Prozessen in PPP und EPP sind nur drei experimentell zugänglich. Untersucht werden diese Reaktionen an mehreren verschiedenen Anlagen, z.B. in Mainz, Bonn oder Saskatoon. Die dort gewonnenen Daten werden hier verwendet, um die Grenzen der chiralen Störungstheorie auszuloten. rnrnDiese Arbeit stellt die erste, vollständige, manifest lorentzinvariante Rechnung in O(q^4) für PPP und EPP, und die erste jemals durchgeführte Rechnung mit Vektormesonen als Freiheitsgrade für diesen Prozess, dar. Neben der Berechnung der physikalischen Observablen wird auch eine Partialwellenzerlegung durchgeführt und die wichtigsten Multipole untersucht. Diese lassen sich aus den gewonnenen Amplituden extrahieren und bieten eine gute Möglichkeit das Nukleon und Resonanzen zu untersuchen. rnrnUm das Matrixelement für die Prozesse berechnen zu können, wurden verschiedene Routinen für das Computeralgebrasystem Mathematica entwickelt, da die Anzahl der zu bestimmenden Diagramme sehr groß ist. Für die Multipolzerlegung werden zwei verschiedene Programme verwendet. Zum einen das bereits existierende Programm XMAID, welches für diese Arbeit entsprechend modifiziert wurde. Zum anderen wurden vergleichbare Routinen für Mathematica entwickelt. Am Ende der Analysen werden die verschiedenen Rechnungen bezüglich ihrer Anwendbarkeit auf PPP und EPP verglichen.
Resumo:
Der erste Teil der vorliegenden Dissertation befasst sich mit der Untersuchung der perturbativen Unitarität im Komplexe-Masse-Renormierungsschema (CMS). Zu diesem Zweck wird eine Methode zur Berechnung der Imaginärteile von Einschleifenintegralen mit komplexen Massenparametern vorgestellt, die im Grenzfall stabiler Teilchen auf die herkömmlichen Cutkosky-Formeln führt. Anhand einer Modell-Lagrangedichte für die Wechselwirkung eines schweren Vektorbosons mit einem leichten Fermion wird demonstriert, dass durch Anwendung des CMS die Unitarität der zugrunde liegenden S-Matrix im störungstheoretischen Sinne erfüllt bleibt, sofern die renormierte Kopplungskonstante reell gewählt wird. Der zweite Teil der Arbeit beschäftigt sich mit verschiedenen Anwendungen des CMS in chiraler effektiver Feldtheorie (EFT). Im Einzelnen werden Masse und Breite der Deltaresonanz, die elastischen elektromagnetischen Formfaktoren der Roperresonanz, die elektromagnetischen Formfaktoren des Übergangs vom Nukleon zur Roperresonanz sowie Pion-Nukleon-Streuung und Photo- und Elektropionproduktion für Schwerpunktsenergien im Bereich der Roperresonanz berechnet. Die Wahl passender Renormierungsbedingungen ermöglicht das Aufstellen eines konsistenten chiralen Zählschemas für EFT in Anwesenheit verschiedener resonanter Freiheitsgrade, so dass die aufgeführten Prozesse in Form einer systematischen Entwicklung nach kleinen Parametern untersucht werden können. Die hier erzielten Resultate können für Extrapolationen von entsprechenden Gitter-QCD-Simulationen zum physikalischen Wert der Pionmasse genutzt werden. Deshalb wird neben der Abhängigkeit der Formfaktoren vom quadrierten Impulsübertrag auch die Pionmassenabhängigkeit des magnetischen Moments und der elektromagnetischen Radien der Roperresonanz untersucht. Im Rahmen der Pion-Nukleon-Streuung und der Photo- und Elektropionproduktion werden eine Partialwellenanalyse und eine Multipolzerlegung durchgeführt, wobei die P11-Partialwelle sowie die Multipole M1- und S1- mittels nichtlinearer Regression an empirische Daten angepasst werden.
Resumo:
Lattice Quantum Chromodynamics (LQCD) is the preferred tool for obtaining non-perturbative results from QCD in the low-energy regime. It has by nowrnentered the era in which high precision calculations for a number of phenomenologically relevant observables at the physical point, with dynamical quark degrees of freedom and controlled systematics, become feasible. Despite these successes there are still quantities where control of systematic effects is insufficient. The subject of this thesis is the exploration of the potential of todays state-of-the-art simulation algorithms for non-perturbativelyrn$\mathcal{O}(a)$-improved Wilson fermions to produce reliable results in thernchiral regime and at the physical point both for zero and non-zero temperature. Important in this context is the control over the chiral extrapolation. Thisrnthesis is concerned with two particular topics, namely the computation of hadronic form factors at zero temperature, and the properties of the phaserntransition in the chiral limit of two-flavour QCD.rnrnThe electromagnetic iso-vector form factor of the pion provides a platform to study systematic effects and the chiral extrapolation for observables connected to the structure of mesons (and baryons). Mesonic form factors are computationally simpler than their baryonic counterparts but share most of the systematic effects. This thesis contains a comprehensive study of the form factor in the regime of low momentum transfer $q^2$, where the form factor is connected to the charge radius of the pion. A particular emphasis is on the region very close to $q^2=0$ which has not been explored so far, neither in experiment nor in LQCD. The results for the form factor close the gap between the smallest spacelike $q^2$-value available so far and $q^2=0$, and reach an unprecedented accuracy at full control over the main systematic effects. This enables the model-independent extraction of the pion charge radius. The results for the form factor and the charge radius are used to test chiral perturbation theory ($\chi$PT) and are thereby extrapolated to the physical point and the continuum. The final result in units of the hadronic radius $r_0$ is rn$$ \left\langle r_\pi^2 \right\rangle^{\rm phys}/r_0^2 = 1.87 \: \left(^{+12}_{-10}\right)\left(^{+\:4}_{-15}\right) \quad \textnormal{or} \quad \left\langle r_\pi^2 \right\rangle^{\rm phys} = 0.473 \: \left(^{+30}_{-26}\right)\left(^{+10}_{-38}\right)(10) \: \textnormal{fm} \;, $$rn which agrees well with the results from other measurements in LQCD and experiment. Note, that this is the first continuum extrapolated result for the charge radius from LQCD which has been extracted from measurements of the form factor in the region of small $q^2$.rnrnThe order of the phase transition in the chiral limit of two-flavour QCD and the associated transition temperature are the last unkown features of the phase diagram at zero chemical potential. The two possible scenarios are a second order transition in the $O(4)$-universality class or a first order transition. Since direct simulations in the chiral limit are not possible the transition can only be investigated by simulating at non-zero quark mass with a subsequent chiral extrapolation, guided by the universal scaling in the vicinity of the critical point. The thesis presents the setup and first results from a study on this topic. The study provides the ideal platform to test the potential and limits of todays simulation algorithms at finite temperature. The results from a first scan at a constant zero-temperature pion mass of about 290~MeV are promising, and it appears that simulations down to physical quark masses are feasible. Of particular relevance for the order of the chiral transition is the strength of the anomalous breaking of the $U_A(1)$ symmetry at the transition point. It can be studied by looking at the degeneracies of the correlation functions in scalar and pseudoscalar channels. For the temperature scan reported in this thesis the breaking is still pronounced in the transition region and the symmetry becomes effectively restored only above $1.16\:T_C$. The thesis also provides an extensive outline of research perspectives and includes a generalisation of the standard multi-histogram method to explicitly $\beta$-dependent fermion actions.
Resumo:
Die vorliegende Arbeit beschäftigt sich mit der Modellierung niederenergetischer elektromagnetischer und hadronischer Prozesse im Rahmen einer manifest lorentzinvarianten, chiralen effektiven Feldtheorie unter expliziter, dynamischer Berücksichtigung resonanter, das heißt vektormesonischer Freiheitsgrade. Diese effektive Theorie kann daher als Approximation der grundlegenden Quantenchromodynamik bei kleinen Energien verstanden werden. Besonderes Augenmerk wird dabei auf das verwendete Zähl- sowie Renormierungschema gelegt, wodurch eine konsistente Beschreibung mesonischer Prozesse bis zu Energien von etwa 1GeV ermöglicht wird. Das verwendete Zählschema beruht dabei im Wesentlichen auf einem Argument für großes N_c (Anzahl der Farbfreiheitsgrade) und lässt eine äquivalente Behandlung von Goldstonebosonen (Pionen) und Resonanzen (Rho- und Omegamesonen) zu. Als Renormierungsschema wird das für (bezüglich der starken Wechselwirkung) instabile Teilchen besonders geeignete complex-mass scheme als Erweiterung des extended on-mass-shell scheme verwendet, welches in Kombination mit dem BPHZ-Renormierungsverfahren (benannt nach Bogoliubov, Parasiuk, Hepp und Zimmermann) ein leistungsfähiges Konzept zur Berechnung von Quantenkorrekturen in dieser chiralen effektiven Feldtheorie darstellt. Sämtliche vorgenommenen Rechnungen schließen Terme der chiralen Ordnung vier sowie einfache Schleifen in Feynman-Diagrammen ein. Betrachtet werden unter anderem der Vektorformfaktor des Pions im zeitartigen Bereich, die reelle Compton-Streuung (beziehungsweise Photonenfusion) im neutralen und geladenen Kanal sowie die virtuelle Compton-Streuung, eingebettet in die Elektron-Positron-Annihilation. Zur Extraktion der Niederenergiekopplungskonstanten der Theorie wird letztendlich eine Reihe experimenteller Datensätze verschiedenartiger Observablen verwendet. Die hier entwickelten Methoden und Prozeduren - und insbesondere deren technische Implementierung - sind sehr allgemeiner Natur und können daher auch an weitere Problemstellungen aus diesem Gebiet der niederenergetischen Quantenchromodynamik angepasst werden.
Resumo:
In this thesis, we develop high precision tools for the simulation of slepton pair production processes at hadron colliders and apply them to phenomenological studies at the LHC. Our approach is based on the POWHEG method for the matching of next-to-leading order results in perturbation theory to parton showers. We calculate matrix elements for slepton pair production and for the production of a slepton pair in association with a jet perturbatively at next-to-leading order in supersymmetric quantum chromodynamics. Both processes are subsequently implemented in the POWHEG BOX, a publicly available software tool that contains general parts of the POWHEG matching scheme. We investigate phenomenological consequences of our calculations in several setups that respect experimental exclusion limits for supersymmetric particles and provide precise predictions for slepton signatures at the LHC. The inclusion of QCD emissions in the partonic matrix elements allows for an accurate description of hard jets. Interfacing our codes to the multi-purpose Monte-Carlo event generator PYTHIA, we simulate parton showers and slepton decays in fully exclusive events. Advanced kinematical variables and specific search strategies are examined as means for slepton discovery in experimentally challenging setups.