954 resultados para 080000 INFORMATION AND COMPUTING SCIENCES
Resumo:
Trees are capable of portraying the semi-structured data which is common in web domain. Finding similarities between trees is mandatory for several applications that deal with semi-structured data. Existing similarity methods examine a pair of trees by comparing through nodes and paths of two trees, and find the similarity between them. However, these methods provide unfavorable results for unordered tree data and result in yielding NP-hard or MAX-SNP hard complexity. In this paper, we present a novel method that encodes a tree with an optimal traversing approach first, and then, utilizes it to model the tree with its equivalent matrix representation for finding similarity between unordered trees efficiently. Empirical analysis shows that the proposed method is able to achieve high accuracy even on the large data sets.
Resumo:
This paper provides an outline of genre as we currently know it, and examines the changes occurring as games become more complex. Recent research we've undertaken suggests that our perception of which games fall into which genre category is subjective and that genre hybridization continues to blur our understanding of these categories. Consequently, it is becoming increasingly difficult to categorise game play experience based on traditional genre classifications. We examine the use of videogame activities as a useful mechanism for supplementing our understanding of videogame genre. Through considering activity as a means of classifying game experiences we may obtain a much more nuanced understanding of how players engage with games within a particular genre and across genres.
Resumo:
This paper discusses findings made during a study of energy use feedback in the home (eco-feedback), well after the novelty has worn off. Contributing towards four important knowledge gaps in the research, we explore eco-feedback over longer time scales, focusing on instances where the feedback was not of lasting benefit to users rather than when it was. Drawing from 23 semi-structured interviews with Australian householders, we found that an initially high level of engagement gave way over time to disinterest, neglect and in certain cases, technical malfunction. Additionally, preconceptions concerned with the “purpose” of the feedback were found to affect use. We propose expanding the scope of enquiry for eco-feedback in several ways, and describe how eco-feedback that better supports decision-making in the “maintenance phase”, i.e. once the initial novelty has worn off, may be key to longer term engagement.
Resumo:
Process modelling – the design and use of graphical documentations of an organisation’s business processes – is a key method to document and use information about business processes. Still, despite current interest in process modelling, this research area faces essential challenges. Key unanswered questions concern the impact of process modelling in organisational practice, and the mechanisms through which impacts are developed. To answer these questions and to provide a better understanding of process modelling impact, I turn to the concept of affordances. Affordances describe the possibilities for goal-oriented action that technical objects offer to specified users. This notion has received growing attention from IS researchers. I report on my efforts to further develop the IS discipline’s understanding of affordances and impacts from informational objects, such as process models used by analysts for purposes of information systems analysis and design. Specifically, I seek to extend existing theory on the emergence and actualisation of affordances. I develop a research model that describes the process by which affordances are perceived and actualised and explain their dependence on available information and actualisation effort. I present my plans for operationalising and testing this research model empirically, and provide details about my design of a full-cycle, mixed methods study currently in progress.
Resumo:
This paper presents a long-term experiment where a mobile robot uses adaptive spherical views to localize itself and navigate inside a non-stationary office environment. The office contains seven members of staff and experiences a continuous change in its appearance over time due to their daily activities. The experiment runs as an episodic navigation task in the office over a period of eight weeks. The spherical views are stored in the nodes of a pose graph and they are updated in response to the changes in the environment. The updating mechanism is inspired by the concepts of long- and short-term memories. The experimental evaluation is done using three performance metrics which evaluate the quality of both the adaptive spherical views and the navigation over time.
Resumo:
Organizational transformations reliant on successful ICT system developments (continue to) fail to deliver projected benefits even when contemporary governance models are applied rigorously. Modifications to traditional program, project and systems development management methods have produced little material improvement to successful transformation as they are unable to routinely address the complexity and uncertainty of dynamic alignment of IS investments and innovation. Complexity theory provides insight into why this phenomenon occurs and is used to develop a conceptualization of complexity in IS-driven organizational transformations. This research-in-progress aims to identify complexity formulations relevant to organizational transformation. Political/power based influences, interrelated business rules, socio-technical innovation, impacts on stakeholders and emergent behaviors are commonly considered as characterizing complexity while the proposed conceptualization accommodates these as connectivity, irreducibility, entropy and/or information gain in hierarchically approximation and scaling, number of states in a finite automata and/or dimension of attractor, and information and/or variety.
Resumo:
Incorporating a learner’s level of cognitive processing into Learning Analytics presents opportunities for obtaining rich data on the learning process. We propose a framework called COPA that provides a basis for mapping levels of cognitive operation into a learning analytics system. We utilise Bloom’s taxonomy, a theoretically respected conceptualisation of cognitive processing, and apply it in a flexible structure that can be implemented incrementally and with varying degree of complexity within an educational organisation. We outline how the framework is applied, and its key benefits and limitations. Finally, we apply COPA to a University undergraduate unit, and demonstrate its utility in identifying key missing elements in the structure of the course.
Resumo:
Recent modelling of socio-economic costs by the Australian railway industry in 2010 has estimated the cost of level crossing accidents to exceed AU$116 million annually. To better understand causal factors that contribute to these accidents, the Cooperative Research Centre for Rail Innovation is running a project entitled Baseline Level Crossing Video. The project aims to improve the recording of level crossing safety data by developing an intelligent system capable of detecting near-miss incidents and capturing quantitative data around these incidents. To detect near-miss events at railway level crossings a video analytics module is being developed to analyse video footage obtained from forward-facing cameras installed on trains. This paper presents a vision base approach for the detection of these near-miss events. The video analytics module is comprised of object detectors and a rail detection algorithm, allowing the distance between a detected object and the rail to be determined. An existing publicly available Histograms of Oriented Gradients (HOG) based object detector algorithm is used to detect various types of vehicles in each video frame. As vehicles are usually seen from a sideway view from the cabin’s perspective, the results of the vehicle detector are verified using an algorithm that can detect the wheels of each detected vehicle. Rail detection is facilitated using a projective transformation of the video, such that the forward-facing view becomes a bird’s eye view. Line Segment Detector is employed as the feature extractor and a sliding window approach is developed to track a pair of rails. Localisation of the vehicles is done by projecting the results of the vehicle and rail detectors on the ground plane allowing the distance between the vehicle and rail to be calculated. The resultant vehicle positions and distance are logged to a database for further analysis. We present preliminary results regarding the performance of a prototype video analytics module on a data set of videos containing more than 30 different railway level crossings. The video data is captured from a journey of a train that has passed through these level crossings.
Resumo:
This paper presents an illustrative demonstration of the qualitative data analysis tool NVivo (version 2.0), as employed across a multi-method research design as a comprehensive tool in support of overall research management. The paper will be of interest to (a) novice researchers, as a reference in their research design efforts; (b) academics, involved in research training, where this narrative can be used as a rich teaching case and; potentially to (c) vendors, of similar software tools, who may identify potential new tool applications and valuable tool enhancements.
Resumo:
Business Process Management (BPM) is rapidly evolving as an established discipline. There are a number of efforts underway to formalize the various aspects of BPM practice; creating a formal Body of Knowledge (BoK) is one such effort. Bodies of knowledge are artifacts that have a proven track record for accelerating the professionalization of various disciplines. In order for this to succeed in BPM, it is vital to involve the broader business process community and derive a BoK that has essential characteristics that addresses the discipline’s needs. We argue for the necessity of a comprehensive BoK for the BPM domain, and present a core list of essential features to consider when developing a BoK based on preliminary empirical evidence. The paper identifies and critiques existing Bodies of Knowledge related to BPM, and firmly calls for an effort to develop a more accurate and sustainable BoK for BPM. An approach for this effort is presented with preliminary outcomes.
Resumo:
Process improvement has become a number one business priority, and more and more project requests are raised in organizations, seeking approval and resources for process-related projects. Realistically, the total of the requested funds exceeds the allocated budget, the number of projects is higher than the available bandwidth, and only some of these (very often only few) can be supported and most never see any light. Relevant resources are scarce, and correct decisions must be made to make sure that those projects that are of best value are implemented. How can decision makers make the right decision on the following: Which project(s) are to be approved and when to commence work on them? Which projects are most aligned with corporate strategy? How can the project’s value to the business be calculated and explained? How can these decisions be made in a fair, justifiable manner that brings the best results to the company and its stakeholders? This chapter describes a business value scoring (BVS) model that was built, tested, and implemented by a leading financial institution in Australia to address these very questions. The chapter discusses the background and motivations for such an initiative and describes the tool in detail. All components and underlying concepts are explained, together with details on its application. This tool has been successfully implemented in the case organization. The chapter provides practical guidelines for organizations that wish to adopt this approach.
Resumo:
Topic modelling has been widely used in the fields of information retrieval, text mining, machine learning, etc. In this paper, we propose a novel model, Pattern Enhanced Topic Model (PETM), which makes improvements to topic modelling by semantically representing topics with discriminative patterns, and also makes innovative contributions to information filtering by utilising the proposed PETM to determine document relevance based on topics distribution and maximum matched patterns proposed in this paper. Extensive experiments are conducted to evaluate the effectiveness of PETM by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model significantly outperforms both state-of-the-art term-based models and pattern-based models.
Resumo:
Study Approach The results presented in this report are part of a larger global study on the major issues in BPM. Only one part of the larger study is reported here, viz. interviews with BPM experts. Interviews of BPM tool vendors together with focus group studies involving user organizations were conducted in parallel and set the groundwork for the identification of BPM issues on a global scale. Through this multi-method approach, we identify four distinct sets of outcomes. First, as is the focus of this report, we identify the BPM issues as perceived by BPM experts. Second, the research design allows us to gain insight into the opinions of organizations deploying BPM solutions. Third, an understanding of organizations’ misconceptions of BPM technologies, as confronted by BPM tool vendors, is obtained. Last, we seek to gain an understanding of BPM issues on a global scale, together with knowledge of matters of concern. This final outcome is aimed to produce an industry-driven research agenda that will inform practitioners and, in particular, the research community worldwide on issues and challenges that are prevalent or emerging in BPM and related areas...
Resumo:
L'intérêt suscité par la ré-ingénierie des processus et les technologies de l'information révèle l'émergence du paradigme du management par les processus. Bien que beaucoup d'études aient été publiées sur des outils et techniques alternatives de modélisation de processus, peu d'attention a été portée à l'évaluation post-hoc des activités de modélisation de processus ou à l'établissement de directives sur la façon de conduire efficacement une modélisation de processus. La présente étude a pour objectif de combler ce manque. Nous présentons les résultats d'une étude de cas détaillée, conduite dans une organisation leader australienne dans le but de construire un modèle de réussite de la modélisation des processus.
Resumo:
It is widely acknowledged that effective asset management requires an interdisciplinary approach, in which synergies should exist between traditional disciplines such as: accounting, engineering, finance, humanities, logistics, and information systems technologies. Asset management is also an important, yet complex business practice. Business process modelling is proposed as an approach to manage the complexity of asset management through the modelling of asset management processes. A sound foundation for the systematic application and analysis of business process modelling in asset management is, however, yet to be developed. Fundamentally, a business process consists of activities (termed functions), events/states, and control flow logic. As both events/states and control flow logic are somewhat dependent on the functions themselves, it is a logical step to first identify the functions within a process. This research addresses the current gap in knowledge by developing a method to identify functions common to various industry types (termed core functions). This lays the foundation to extract such functions, so as to identify both commonalities and variation points in asset management processes. This method describes the use of a manual text mining and a taxonomy approach. An example is presented.