960 resultados para voice activity detection
Resumo:
A new sensitive assay for aspartate aminotransterase (AST) and alanine aminotransferase (ALT) activities in biofluids was developed, based on the separation and detection of alanine, glutamate, and aspartate using capillary electrophoresis (CE) with electrochemiluminescence (ECL) detection. The three amino acids were separated in 5 mM phosphate of pH 2.1 as background electrolyte, and detected on a 500 mu m platinum disk electrode at 1.2 V (versus Ag/AgCl) in the presence of 10 mM tris(2,2'-bipyridyl)ruthenium(II) dissolved in 80 mM phosphate of pH 10.5. A mass detection limit of 37.3 fmol (or 81.5 fmol) for glutamate, corresponding to the product in the enzyme reaction catalyzed by 1.24 x 10(-9) U AST (or 2.72 x 10(-9) U ALT) in a 30 min reaction period, was achieved. This assay was applied to investigate the cytotoxicity effect of ethanol on HepG2 cells and differentiating nonalcoholic steatohepatitis (NASH) from alcoholic liver disease, indicating that the technique is promising for the application in the cell biological and clinical fields.
Resumo:
Capillary electrophoresis (CE) with tris(2,2'-bipyridyl) ruthenium (II) (Ru(bpy)(3)(2+)) electrochemiluminescence (ECL) detection technique was developed for the analysis of four polyamines (putrescine (Put), cadaverine (Cad), spermidine (Spd), and spermine (Spm)) analysis. The four polyamines contain different amine groups, which have different ECL activity. There are several parameters which influence the resolution and ECL peak intensities, including the buffer pH and concentrations, separation voltage, sample injection, electrode materials, and Ru(bpy)(3)(2+) concentrations. Polyamines are separated by capillary zone electrophoresis in an uncoated fused-silica capillary (50 cm x 25 mum (ID) filled with acidic phosphate buffer (200 mmol/L phosphate, pH 2.0) - 1 mol/L phosphoric acid (9:1 v/v) and a separation voltage of 5 kV (25 muA), with end-column Ru(bpy)(3)(2+) ECL detection. A 5 mmol/L Ru(bpy)(3)(2+) solution plus 200 mmol/L phosphate buffer (pH 11.0) is added into the reagent reservoir. The calibration curve is linear over a concentration range of two or three orders of magnitude for the polyamines. The analysis time is less than 25 min. Detection limits for Put and Cad are 1.9 x 10(-7) mol/L and 7.6 x 10(-9) mol/L for Spd and Spm, respectively.
Resumo:
A surface plasmon resonance biosensor has been used to determine antibody activity in serum. As a model system, the interaction of mouse IgG and sheep anti-mouse IgG polyclonal antibody was investigated in real time. The factors, including pH value, ionic strength, protein concentration, influencing electrostatic adsorption of mouse IgG protein onto carboxylated dextran-coated sensor chip surface, were studied. The procedures of mouse IgG protein immobilization and immune reaction were monitored in real time. The regeneration effect using the different elution reagents was also investigated. The same mouse IgG immobilized surface can be used for 100 cycles of binding and elution with only 0.38% loss per regeneration in reactivity. The results show that the surface plasmon resonance biosensor is a rapid, simple, sensitive, accurate and reliable detection technique for real-time immunoassay of antibody activity. The assay allows antibodies to be detected and studied in their native form without any purification. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The biosensor based on surface plasmon resonance(SPR) technology is a very useful tool to study the interaction between biomolecles. The main advantages of this technique is to "visualize" macromolecular interactions directly in real time, and in a label-free mode rather than indirect methods like enzyme-linked immunosorbent assays (ELISAs). We immobilize human serum albumin (HSA) to the carboxymethyldextran-modified sensor chip surface covalently to detect the activity of anti-HSA in serum, and regenerate the surface with .1 mol/L phosphoric acid. The results show that SPR biosensor can detect the activity of anti-HSA in real-time quickly and the sensor chip can be used over 100 cycles.
Resumo:
A new type of tyrosinase biosensor was developed for the detection of phenolic compounds, based on the immobilization of tyrosinase in a sol-gel-derived composite matrix that is composed of titanium oxide sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine. Tyrosinase entrapped in the composite matrix can retain its activity to a large extent owing to the good biocompatibility of the matrix. The parameters of the fabrication process and the variables of the experimental conditions for the enzyme electrode were optimized. The resulting sensor exhibited a fast response (20 s), high sensitivity (145.5 muA mmol(-1) 1) and good storage stability. A detection limit of 0.5 muM catechol was obtained at a signal-to-noise ratio of 3.
Resumo:
A highly dispersed ultramicro palladium-particle modified carbon fiber microdisk array electrode (Pd-CFE) was employed for capillary electrophoresis-electrochemical (CEEC) detection of hydroxylamine (HA). The Pd particles obtained were in the nanometer scale, had a high electrocatalytic activity towards HA and exhibited good reproducibility and stability. A linear relationship between the current and the analyte concentration was found between 5 x 10(-6) and 1 x 10(-3) mol/l of HA with a correlation coefficient of 0.9992. The detection limit was 5 x 10(-8) mol/l. The applicability of the method for the determination of HA in river water and waste water was investigated.
Resumo:
An assay procedure utilizing pulsed amperometric detection at a platinum-particles modified electrode has been developed for the determination of cysteine and glutathione in blood samples following preliminary separation by reversed-phase liquid chromatography. A chemically modified electrode (CME) constructed by unique electroreduction from a platinum-salt solution to produce dispersed Pt particles on a glassy carbon surface was demonstrated to catalyze the electo-oxidation of sulfhydryl-containing compounds: DL-cysteine (CYS), reduced glutathione (GSH). When used as the sensing electrode in flow-system pulsed-amperometric detection (PAD), electrode fouling could be avoided using a waveform in which the cathodic reactivation process occurred at a potential of - 1.0 V vs. Ag/AgCl to achieve a cathodic desorption of atomic sulfur. A superior detection limit for these free thiols was obtained at a Pt particle-based GC electrode compared with other methods; this novel dispersed Pt particles CME exhibited high electrocatalytic stability and activity when it was employed as an electrochemical detector in FIA and HPLC for the determination of those organo-sulfur compounds.
Resumo:
A modified method for dispersing platinum particles on a glassy carbon (GC) electrode was investigated. The ultramicro Pt particle-modified electrode obtained exhibited high catalytic stability and activity towards the oxidation of some halide ions (Br-, I-) and inorganic sulfur species (S2O32-, SO32- and SCN-). These anions were separated and detected by using ion chromatography and electrochemical detection via this novel dispersed Pt particles-GC working electrode. The detection limits were 20 ng/ml for Br-, 1.0 ng/ml for I-, 10 ng/ml for SO32- and 4.0 ng/ml for SCN-. This method was employed for the analysis of industrial and environmental waste waters.
Resumo:
A Prussian Blue-modified glassy carbon electrode prepared by simple adsorption exhibited excellent electrocatalytic activity in the oxidation of hydrazine in acidic media. A film of the perfluorosulphonic acid polymer Nafion coated on top of the Prussian Blue-modified glassy carbon electrode can improve the mechanical stability of the Prussian Blue layer in the flow stream. Hydrazine was detected by flow-injection analysis at the modified electrode with high sensitivity. The limit of detection was 0.6 ng.
Resumo:
Dot enzyme-linked immunosorbent assay (dot-ELISA), indirect ELISA and Western blot were performed to detect the virulent protease secreted by Vibrio anguillarum which was isolated from the diseased left-eyed flounder, Paralichthys olivaceous. Sensitivity results showed that dot-ELISA is a more sensitive, rapid and simple technique for the protease detection. The minimal detectable amount of protease is about 7 pg in the dot-ELISA test, while 7.8 ng in the indirect ELISA and 6.25 ng in the Western blot respectively. Protease could be detected 2 h after incubation of V. anguillarum in the 2216E liquid medium but enzyme activity was very low at that period. From 6 to 12 h, the amount and enzyme activity of protease increased markedly and reached maximum at stationary phase. Analysis of serum samples periodically collected from the infected flounders showed that after 2 h of infection by V. anguillarum, the pathogenic bacteria could be detected in the blood of the infected flounders but no protease was found. It was 5 similar to 6 h after infection that the protease was detected in blood and then the amount increased as infection advanced. Quantitative detection of protease either incubation in the medium or from the blood of infected flounders could be accomplished in virtue of positive controls of quantificational protease standards ("marker") so that the alterations of protease secretion both in vitro and in vivo could be understood generally. In addition, the indirect ELISA and dot-ELISA were also performed to detect V. anguillarum cells. Results indicated that the sensitivity of indirect ELISA to bacteria cells is higher than that of the dot-ELISA, and that the minimal detectable amount is approximately 10(4) cell/mL in the indirect ELISA, while 10(5) cell/mL in the dot-ELISA.
Resumo:
A method based on protein phosphatase enzyme activity inhibition for the detection of diarrhetic shellfish poison (DSP) was used to analyze the DSP toxicity in three oyster samples. Based on the standard dose-effect curve developed with a series of okadaic acid (OA) standard solutions, the DSP toxicity of the three oyster samples collected were screened, and the results showed that there were no OA and dinophysis toxins ( DTXs) in the samples without hydrolization. However, the OA toxicity could be detected in two of the hydrolyzed samples, and the OA toxicity of the two samples were 1.81 and 1.21 mu g OA eq./kg oyster, respectively.
Resumo:
Ellis, D. I., Broadhurst, D., Kell, D. B., Rowland, J. J., Goodacre, R. (2002). Rapid and quantitative detection of the microbial spoilage of meat by Fourier Transform Infrared Spectroscopy and machine learning. ? Applied and Environmental Microbiology, 68, (6), 2822-2828 Sponsorship: BBSRC
Resumo:
Y. Zhu, S. Williams and R. Zwiggelaar, 'Computer technology in detection and staging of prostate carcinoma: a review', Medical Image Analysis 10 (2), 178-199 (2006)
Resumo:
Intersex in largemouth bass (Micropterus salmoides) has been correlated with regional anthropogenic activity, but has not been causally linked to environmental factors. Four groups of hatchery-reared largemouth bass (LMB) and fathead minnows (FHM) of varying ages and sex were exposed to aqueous poultry litter mixtures, 17β- estradiol (E2), and controls. Water samples were analyzed for estrogens through liquid chromatography tandem mass spectrometry and estrogenicity through the bioluminescent yeast estrogen screen assay. Fish plasma was analyzed for the egg yolk protein vitellogenin (Vtg) using enzyme–linked immunosorbent assay and gonad tissue was examined histologically for enumeration of testicular oocytes (TO). Water chemistry revealed typical E2 conversion to Estrone with subsequent decay over the exposure periods. A modest prevalence of TO (9.4%) was detected with no apparent treatment effect. While significant Vtg induction was found in E2 exposed FHM, minimal Vtg induction was found in male LMB. Despite field findings of intersex in male LMB, this species may be poorly suited for laboratory investigations into endocrine disruption.
Resumo:
Microdialysis enables the chemistry of extracellular ?uid in body tissues to be measured. Extracellular proteases such as the cysteine protease, cathepsin S (CatS), are thought to facilitate astrocytoma invasion. Microdialysates obtained from human brain tumoursin vivo were subjected to cathepsin S activity and ELISA assays. Cathepsin S ELISA expression was detected in ?ve out of 10 tumour microdialysates, while activity was detected in ?ve out of 11 tumour microdialysates. Cathepsin S expression was also detected in microdialysate from the normal brain control although no activity was found in the same sample. While some re?nements to the technique are necessary, the authors demonstrate the feasibility and safety of microdialysis in human astrocytomasin vivo. Characterisation of the extracellular environment of brain tumoursin vivo using microdialysis may be a useful tool to identify the protease pro?le of brain tumours.