952 resultados para spectrum of transition operator


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the evolution of the Raman spectrum of defected graphene as a function of doping. Polymer electrolyte gating allows us to move the Fermi level up to 0.7 eV, as directly monitored by in situ Hall-effect measurements. For a given number of defects, we find that the intensities of the D and D' peaks decrease with increasing doping. We assign this to an increased total scattering rate of the photoexcited electrons and holes, due to the doping-dependent strength of electron-electron scattering. We present a general relation between D peak intensity and defects valid for any doping level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using ab initio electronic structure calculations within density functional theory, we study the structural, electronic, and magnetic properties of Si doped with a transition metal impurity. We consider the transition metals of the 3d series V, Cr, Mn, Fe, Co, and Ni. To get insight into the level filling mechanism and the magnetization saturation, we first investigate the transition metal-Si alloys in the zinc-blende structure. Next, we investigate the doping of bulk Si with a transition metal atom, in which it occupies the substitutional site, the interstitial site with tetrahedral symmetry, and the interstitial site with hexagonal symmetry. It is found that all of these transition metal impurities prefer an interstitial position in Si. Furthermore, we show that it is possible to interpret the electronic and magnetic properties by using a simple level filling picture and a comparison is made to Ge doped with the same transition metal atoms. In order to get insight into the effect of a strained environment, we calculate the formation energy as a function of an applied homogeneous pressure and we show that an applied pressure can stabilize the substitutional position of transition metal impurities in Si. Finally, the energies of the ferromagnetic states are compared to those of the antiferromagnetic states. It is shown that the interstitial site of the Mn dopant helps us to stabilize the nearest neighbor substitutional site to realize the ferromagnetic state. For doping of Si with Cr, a ferrimagnetic behavior is predicted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of hydrogenated silicon films near the threshold of crystallinity was prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) from a mixture of SiH4 diluted in H, The effect of hydrogen dilution ratios R-H = [H-2]/[SiH4] on microstructure of the films was investigated. Photoelectronic properties and stability of the films were studied as a function of crystalline fraction. The results show that more the crystalline volume fraction in the silicon films, the higher mobility life-time product (mu tau), better the stability and lower the photosensitivity. Those diphasic films contained 8%-31% crystalline volume fraction can gain both the fine photoelectronic properties and high stability. in the diphasic (contained 12% crystalline volume fraction) solar cell, we obtained a much lower light-induced degradation of similar to 2.9%, with a high initial efficiency of 10.01% and a stabilized efficiency of 9.72% (AM1.5, 100 mW/cm(2)). (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biaxial piezospectroscopic coefficient (i.e., the rate of spectral shift with stress) of the electrostimulated near-band-gap luminescence of gallium nitride (GaN) was determined as Pi=-25.8 +/- 0.2 meV/GPa. A controlled biaxial stress field was applied on a hexagonal GaN film, epitaxially grown on (0001) sapphire using a ball-on-ring biaxial bending jig, and the spectral shift of the electrostimulated near-band-gap was measured in situ in the scanning electron microscope. This calibration method can be useful to overcome the lack of a bulk crystal of relatively large size for more conventional uniaxial bending calibrations, which has so far hampered the precise determination of the piezospectroscopic coefficient of GaN. The main source of error involved with the present calibration method is represented by the selection of appropriate values for the elastic stiffness constants of both film and substrate. The ball-on-ring calibration method can be generally applied to directly determine the biaxial-stress dependence of selected cathodoluminescence bands of epilayer/substrate materials without requiring separation of the film from the substrate. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogenated silicon (Si:H) films near the threshold of crystallinity were prepared by very high-frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) using a wide range of hydrogen dilution R-H = [H-2]/[SiH4] values of 2-100. The effects of H dilution R-H on the structural properties of the films were investigated using micro-Raman scattering and Fourier transform infrared (FTIR) absorption spectroscopy. The obtained Raman spectra show that the H dilution leads to improvements in the short-range order and the medium-range order of the amorphous network and then to the morphological transition from amorphous to crystalline states. The onset of this transition locates between R-H = 30 and 40 in our case, and with further increasing R-H from 40 to 100, the nanocrystalline volume fraction increases from similar to23% to 43%, and correspondingly the crystallite size enlarges from similar to2.8 to 4.4 nm. The FTIR spectra exhibit that with R-H increasing, the relative intensities of both the SiH stretching mode component at 2100 cm(-1) and wagging mode component at 620 cm(-1) increase in the same manner. We assert that these variations in IR spectra should be associated with the formation of paracrystalline structures in the low H dilution films and nanocrystalline structures in the high H dilution films. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(1 1 (2) over bar 0) GaN/InGaN multiple quantum wells (MQWs) were grown on (1 (2) over bar 0 2) sapphire by metal-organic vapor phase epitaxy. The excitation-intensity-dependent photoluminescence (PL) spectrum of these samples was measured, and no peak shift was observed. This phenomenon was attributed to the absence of piezoelectric field (PEF) along the growth orientation of the (1 1 (2) over bar 0) face MQWs. Our experimental results showed that PEF was the main reason causing peak blueshift in excitation-intensity-dependent PL spectrum of (0 0 0 1) InGaN/GaN NIQWs. It was expected that fabricating (1 1 (2) over bar 0) face nitride device should be a method to avoid PEF and get low-threshold, high-quantum-efficiency and stable-emission-wavelength light-emission devices. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmon resonance spectra of supported Ag nanoparticles are studied by depositing the particles on different substrates. It was found that the dielectric properties of the substrates have significant effects on the spectral line shape, except the resonance frequency. Beyond the plasmon resonance band, the spectral shape is mainly governed by the dielectric function, particularly its imaginary part, of the substrate. The plasmon resonance band, on the other hand, may be severely distorted if the substrate is absorbing strongly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of thermal annealing on the Raman spectrum of Si0.33Ge0.67 alloy grown on Si (100) by molecular beam epitaxy is investigated in the temperature range of 550-800 degrees C. For annealing below 700 degrees C, interdiffusion at the interface is negligible and the residual strain plays the dominant role in the Raman shift. The strain-shift coefficients for Si-Ge and Ge-Ge phonon modes are determined to be 915 +/- 215 cm(-1) and 732 +/- 117 cm(-1), respectively. For higher temperature annealing, interdiffusion is significant and strongly affects the Raman shift and the spectral shape.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photoabsorption processes of Au2+, Au3+, and Au4+ have been investigated experimentally and theoretically in the 70-127 eV region. Using the dual laser-produced plasma technique, the 4f and 5p photoabsorption spectrum has been recorded at 50 ns time delay and was found to be dominated by a great number of lines from 4f-5d, 6d and 5p-5d, 6s transitions, which have been identified by comparison with the aid of Hartree-Fock with configuration interaction calculations. The characteristic feature of the spectrum is that satellite lines from excited configurations containing one or two 6s electrons are more important than resonance lines, and with increasing ionization, satellite contributions from states with one 6s spectator electron gradually become more important than those with two 6s spectator electrons. Based on the assumption of a normalized Boltzmann distribution among the excited states and a steady-state collisional-radiative model, we succeeded in reproducing a spectrum which is in good agreement with experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of laser fields on the NO interaction potentials is obtained by the calculation of time-resolved photoelectron spectrum (TRPES) using the time-dependent wave-packet method. The calculation not only shows that the overlap of the pump-probe pulses makes some NO molecular "invisible" states visible, but also that the coupling strength and the positions of relevant curves change on increasing the laser intensity. These changed potentials affect their dynamical behavior and influence the shape and position of each peak in TRPES. That the coupling strength of relevant potentials can be changed by the field-matter interaction is consistent with our ab initio calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report a facile method for the fabrication of type-I collagen-silver nanoparticles (Ag NPs) multilayered films by utilizing type-I collagen as a medium. These samples were characterized by UV-vis spectra photometer, atomic force microscopy, scanning electron microscopy, and Fourier transform IR spectrum. Experimental results show that collagen molecules serve as effective templates to assemble Ag NPs into multilayer films. These samples exhibit high surface-enhanced Raman scattering (SERS) enhancement abilities.