The spectrum of an open vertex model based on the U(q)[SU(2)] algebra at roots of unity
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
We study the exact solution of an N-state vertex model based on the representation of the U(q)[SU(2)] algebra at roots of unity with diagonal open boundaries. We find that the respective reflection equation provides us one general class of diagonal K-matrices having one free-parameter. We determine the eigenvalues of the double-row transfer matrix and the respective Bethe ansatz equation within the algebraic Bethe ansatz framework. The structure of the Bethe ansatz equation combine a pseudomomenta function depending on a free-parameter with scattering phase-shifts that are fixed by the roots of unity and boundary variables. (C) 2010 Elsevier B.V. All rights reserved. |
Identificador |
NUCLEAR PHYSICS B, v.833, n.3, p.199-219, 2010 0550-3213 http://producao.usp.br/handle/BDPI/29558 10.1016/j.nuclphysb.2010.03.001 |
Idioma(s) |
eng |
Publicador |
ELSEVIER SCIENCE BV |
Relação |
Nuclear Physics B |
Direitos |
restrictedAccess Copyright ELSEVIER SCIENCE BV |
Palavras-Chave | #Lattice integrable models #Open boundary conditions #Bethe ansatz #NONDIAGONAL BOUNDARY TERMS #FACTORIZED S-MATRIX #OPEN SPIN CHAINS #BETHE-ANSATZ #R-MATRICES #DIMENSIONAL REPRESENTATIONS #REFLECTION MATRICES #XXZ CHAIN #HIERARCHY #LATTICE #Physics, Particles & Fields |
Tipo |
article original article publishedVersion |