977 resultados para first-order actions
Resumo:
In this work we consider several instances of the following problem: "how complicated can the isomorphism relation for countable models be?"' Using the Borel reducibility framework, we investigate this question with regard to the space of countable models of particular complete first-order theories. We also investigate to what extent this complexity is mirrored in the number of back-and-forth inequivalent models of the theory. We consider this question for two large and related classes of theories. First, we consider o-minimal theories, showing that if T is o-minimal, then the isomorphism relation is either Borel complete or Borel. Further, if it is Borel, we characterize exactly which values can occur, and when they occur. In all cases Borel completeness implies lambda-Borel completeness for all lambda. Second, we consider colored linear orders, which are (complete theories of) a linear order expanded by countably many unary predicates. We discover the same characterization as with o-minimal theories, taking the same values, with the exception that all finite values are possible except two. We characterize exactly when each possibility occurs, which is similar to the o-minimal case. Additionally, we extend Schirrman's theorem, showing that if the language is finite, then T is countably categorical or Borel complete. As before, in all cases Borel completeness implies lambda-Borel completeness for all lambda.
Resumo:
This paper deals with the development and the analysis of asymptotically stable and consistent schemes in the joint quasi-neutral and fluid limits for the collisional Vlasov-Poisson system. In these limits, the classical explicit schemes suffer from time step restrictions due to the small plasma period and Knudsen number. To solve this problem, we propose a new scheme stable for choices of time steps independent from the small scales dynamics and with comparable computational cost with respect to standard explicit schemes. In addition, this scheme reduces automatically to consistent discretizations of the underlying asymptotic systems. In this first work on this subject, we propose a first order in time scheme and we perform a relative linear stability analysis to deal with such problems. The framework we propose permits to extend this approach to high order schemes in the next future. We finally show the capability of the method in dealing with small scales through numerical experiments.
Resumo:
Both basic and applied research on the construction, implementation, maintenance, and evaluation of classification schemes is called classification theory. If we employ Ritzer’s metatheoretical method of analysis on the over one-hundred year-old body of literature, we can see categories of theory emerge. This paper looks at one particular part of knowledge organization work, namely classification theory, and asks 1) what are the contours of this intellectual space, and, 2) what have we produced in the theoretical reflection on con- structing, implementing, and evaluating classification schemes? The preliminary findings from this work are that classification theory can be separated into three kinds: foundational classification theory, first-order classification theory, and second-order classification theory, each with its own concerns and objects of study.
Resumo:
We generalize the Liapunov convexity theorem's version for vectorial control systems driven by linear ODEs of first-order p = 1 , in any dimension d ∈ N , by including a pointwise state-constraint. More precisely, given a x ‾ ( ⋅ ) ∈ W p , 1 ( [ a , b ] , R d ) solving the convexified p-th order differential inclusion L p x ‾ ( t ) ∈ co { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e., consider the general problem consisting in finding bang-bang solutions (i.e. L p x ˆ ( t ) ∈ { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e.) under the same boundary-data, x ˆ ( k ) ( a ) = x ‾ ( k ) ( a ) & x ˆ ( k ) ( b ) = x ‾ ( k ) ( b ) ( k = 0 , 1 , … , p − 1 ); but restricted, moreover, by a pointwise state constraint of the type 〈 x ˆ ( t ) , ω 〉 ≤ 〈 x ‾ ( t ) , ω 〉 ∀ t ∈ [ a , b ] (e.g. ω = ( 1 , 0 , … , 0 ) yielding x ˆ 1 ( t ) ≤ x ‾ 1 ( t ) ). Previous results in the scalar d = 1 case were the pioneering Amar & Cellina paper (dealing with L p x ( ⋅ ) = x ′ ( ⋅ ) ), followed by Cerf & Mariconda results, who solved the general case of linear differential operators L p of order p ≥ 2 with C 0 ( [ a , b ] ) -coefficients. This paper is dedicated to: focus on the missing case p = 1 , i.e. using L p x ( ⋅ ) = x ′ ( ⋅ ) + A ( ⋅ ) x ( ⋅ ) ; generalize the dimension of x ( ⋅ ) , from the scalar case d = 1 to the vectorial d ∈ N case; weaken the coefficients, from continuous to integrable, so that A ( ⋅ ) now becomes a d × d -integrable matrix; and allow the directional vector ω to become a moving AC function ω ( ⋅ ) . Previous vectorial results had constant ω, no matrix (i.e. A ( ⋅ ) ≡ 0 ) and considered: constant control-vertices (Amar & Mariconda) and, more recently, integrable control-vertices (ourselves).
Resumo:
The mode characteristics for two coupled microdisks are investigated by the finite-difference time-domain technique. In the two coupled micodisks, mode coupling between the same order whispering-gallery modes (WGMs) results in coupled WGMs with split mode wavelengths. The numerical results show that the split mode wavelengths of the coupled first- and second-order WGMs can have a crossing point in some cases, which can induce anticrossing mode coupling between them and greatly reduce the mode Q factor of the coupled first-order WGMs. The time variation of mode field pattern shows the transformation between the coupled first- and second-order WGMs. (C) 2007 Optical Society of America
Resumo:
Nonpolar a-plane [(1120)] GaN samples have been grown on r-plane [(1102)] sapphire substrates by low-pressure metal-organic chemical-vapor deposition. The room-temperature first and second order Raman scattering spectra of nonpolar a-plane GaN have been measured in surface and edge backscattering geometries. All of the phonon modes that the selection rules allow have been observed in the first order Raman spectra. The frequencies and linewidths of the active modes have been analyzed. The second order phonon modes are composed of acoustic overtones, acoustic-optical and optical-optical combination bands, and optical overtones. The corresponding assignments of second order phonon modes have been made. (c) 2007 American Institute of Physics.
Resumo:
The adsorption of biadipate on Au(111) was studied by cyclic voltammetry and chronocoulometry. The biadipate adlayer undergoes a potential-driven phase transition. It is shown that the phase transition can be either of the first- or second-order depending on the biadipate concentration. At low surfactant concentrations, the first-order transition is characterised by a discontinuity in the charge density-potential curve and by the presence of very sharp peaks in the voltammetric response. At higher concentrations, these peaks are no longer observed but a discontinuity in the capacity curve is still noticeable, in agreement with a second-order transition. © the Owner Societies.
Resumo:
Gas absorption accompanied by an irreversible chemical reaction of first-order or second-order in a liquid layer of finite thickness in plug flow has been investigated. The analytical solution to the enhancement factor has been derived for the case of a first-order reaction, and the exact solution to the enhancement factor has been obtained via numerical simulation for the case of a second-order reaction. The enhancement factor in both cases is presented as a function of the Fourier number and tends to deviate from the prediction of the existing enhancement factor expressions based on the penetration theory at Fourier numbers above 0.1 due to the absence of a well-mixed bulk region in the liquid layer. Approximate enhancement factor expressions that describe the analytical and exact solutions with an accuracy of 5?% and 9?%, respectively, have been proposed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Motion is a powerful cue for figure-ground segregation, allowing the recognition of shapes even if the luminance and texture characteristics of the stimulus and background are matched. In order to investigate the neural processes underlying early stages of the cue-invariant processing of form, we compared the responses of neurons in the striate cortex (V1) of anaesthetized marmosets to two types of moving stimuli: bars defined by differences in luminance, and bars defined solely by the coherent motion of random patterns that matched the texture and temporal modulation of the background. A population of form-cue-invariant (FCI) neurons was identified, which demonstrated similar tuning to the length of contours defined by first- and second-order cues. FCI neurons were relatively common in the supragranular layers (where they corresponded to 28% of the recorded units), but were absent from layer 4. Most had complex receptive fields, which were significantly larger than those of other V1 neurons. The majority of FCI neurons demonstrated end-inhibition in response to long first- and second-order bars, and were strongly direction selective, Thus, even at the level of V1 there are cells whose variations in response level appear to be determined by the shape and motion of the entire second-order object, rather than by its parts (i.e. the individual textural components). These results are compatible with the existence of an output channel from V1 to the ventral stream of extrastriate areas, which already encodes the basic building blocks of the image in an invariant manner.
Resumo:
Experimental investigations of 10×118 Gbit/s DP-QPSK WDM transmission using three types of distributed Raman amplification techniques are presented. Novel ultra-long Raman fibre laser based amplification with second order counter-propagated pumping is compared with conventional first order and dual order counter-pumped Raman amplification. We demonstrate that URFL based amplification can extend the transmission reach up to a distance of 7520 km in comparison with 5010 km and 6180 km using first order and dual order Raman amplification respectively. © 2014 IEEE.
Resumo:
Binocular combination for first-order (luminancedefined) stimuli has been widely studied, but we know rather little about this binocular process for spatial modulations of contrast (second-order stimuli). We used phase-matching and amplitude-matching tasks to assess binocular combination of second-order phase and modulation depth simultaneously. With fixed modulation in one eye, we found that binocularly perceived phase was shifted, and perceived amplitude increased almost linearly as modulation depth in the other eye increased. At larger disparities, the phase shift was larger and the amplitude change was smaller. The degree of interocular correlation of the carriers had no influence. These results can be explained by an initial extraction of the contrast envelopes before binocular combination (consistent with the lack of dependence on carrier correlation) followed by a weighted linear summation of second-order modulations in which the weights (gains) for each eye are driven by the first-order carrier contrasts as previously found for first-order binocular combination. Perceived modulation depth fell markedly with increasing phase disparity unlike previous findings that perceived first-order contrast was almost independent of phase disparity. We present a simple revision to a widely used interocular gain-control theory that unifies first- and second-order binocular summation with a single principle-contrast-weighted summation-and we further elaborate the model for first-order combination. Conclusion: Second-order combination is controlled by first-order contrast.
Resumo:
In this paper, we consider the variable-order Galilei advection diffusion equation with a nonlinear source term. A numerical scheme with first order temporal accuracy and second order spatial accuracy is developed to simulate the equation. The stability and convergence of the numerical scheme are analyzed. Besides, another numerical scheme for improving temporal accuracy is also developed. Finally, some numerical examples are given and the results demonstrate the effectiveness of theoretical analysis. Keywords: The variable-order Galilei invariant advection diffusion equation with a nonlinear source term; The variable-order Riemann–Liouville fractional partial derivative; Stability; Convergence; Numerical scheme improving temporal accuracy