Multiscale Schemes for the BGK--Vlasov--Poisson System in the Quasi-Neutral and Fluid Limits. Stability Analysis and First Order Schemes
Contribuinte(s) |
Institut National de Recherche en Informatique et en Automatique (Inria) Invariant Preserving SOlvers (IPSO) ; Institut de Recherche Mathématique de Rennes (IRMAR) ; Centre National de la Recherche Scientifique (CNRS) - AGROCAMPUS OUEST - École normale supérieure - Cachan (ENS Cachan) - Institut National des Sciences Appliquées (INSA) - Université de Rennes 1 (UR1) - Université Rennes 2 - Institut National de Recherche en Informatique et en Automatique (Inria) - Centre National de la Recherche Scientifique (CNRS) - AGROCAMPUS OUEST - École normale supérieure - Cachan (ENS Cachan) - Institut National des Sciences Appliquées (INSA) - Université de Rennes 1 (UR1) - Université Rennes 2 - Institut National de Recherche en Informatique et en Automatique (Inria) - Inria Rennes – Bretagne Atlantique ; Institut National de Recherche en Informatique et en Automatique (Inria) Institut de Recherche Mathématique de Rennes (IRMAR) ; Centre National de la Recherche Scientifique (CNRS) - AGROCAMPUS OUEST - École normale supérieure - Cachan (ENS Cachan) - Institut National des Sciences Appliquées (INSA) - Université de Rennes 1 (UR1) - Université Rennes 2 - Institut National de Recherche en Informatique et en Automatique (Inria) Department of Mathematics and Informatics ; University of Ferrara [Ferrara] Institut de Mathématiques de Toulouse UMR5219 (IMT) ; Université Toulouse 1 Capitole (UT1) - Université Toulouse 2 (UT2) - Université Paul Sabatier - Toulouse 3 (UPS) - PRES Université de Toulouse - Institut National des Sciences Appliquées de Toulouse (INSA de Toulouse) - Centre National de la Recherche Scientifique (CNRS) ANR-14-CE23-0007, MOONRISE, MOdèles, Oscillations et SchEmas NUmeriques(2014) |
---|---|
Data(s) |
01/07/2015
|
Resumo |
This paper deals with the development and the analysis of asymptotically stable and consistent schemes in the joint quasi-neutral and fluid limits for the collisional Vlasov-Poisson system. In these limits, the classical explicit schemes suffer from time step restrictions due to the small plasma period and Knudsen number. To solve this problem, we propose a new scheme stable for choices of time steps independent from the small scales dynamics and with comparable computational cost with respect to standard explicit schemes. In addition, this scheme reduces automatically to consistent discretizations of the underlying asymptotic systems. In this first work on this subject, we propose a first order in time scheme and we perform a relative linear stability analysis to deal with such problems. The framework we propose permits to extend this approach to high order schemes in the next future. We finally show the capability of the method in dealing with small scales through numerical experiments. |
Identificador |
hal-01392411 https://hal.inria.fr/hal-01392411 https://hal.inria.fr/hal-01392411/document https://hal.inria.fr/hal-01392411/file/cdv_qn_hal.pdf DOI : 10.1137/140991558 |
Idioma(s) |
en |
Publicador |
HAL CCSD |
Relação |
info:eu-repo/semantics/altIdentifier/doi/10.1137/140991558 |
Fonte |
https://hal.inria.fr/hal-01392411 2015 |
Palavras-Chave | #Collisional Vlasov-Poisson system #quasi-neutral limit #fluid-dynamic limit #asymp- totic preserving schemes #multiscale #stability analysis #[PHYS.PHYS.PHYS-COMP-PH] Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] #[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] |
Tipo |
info:eu-repo/semantics/preprint Preprints, Working Papers, ... |