610 resultados para Telecommunication.
Resumo:
Silicon-on insulator (SOI) is an attractive platform for the fabrication of optoelectronic integrated circuit. Thin cladding layers (< 1.0
Resumo:
A novel crosslinkable polyurethane is used as the core layer of the electro-optic(E-O) modulator. The refractive index and dispersion of this material have been detected by analyzing the F-P oscillation in transmission spectra. Calculated results from the effective index method are given to design the Mach-Zehnder and straight 5-layer ridge wave-guide device (including the metal electrodes). With light at 1.31 mum being fiber coupled into waveguide, the mode properties of these devices have been demonstrated in a micron control system. The guided mode is accordant with the theoretical analysis.
Resumo:
Resonant-cavity-enhanced (RCE) photodetectors have been demonstrated to be able to improve the bandwidth-efficiency product. We report one top-illumination and one bottom-illumination SiGe/Si multiple quantum-well (MQW) RCE photodetectors fabricated on a separation-by-implanted-oxygen (SIMOX) wafer operating near 1300nm, The buried oxide layer in SIMOX is used as a mirror to form a vertical cavity with the silicon dioxide/silicon Bragg reflector deposited on the top surface. A peak responsivity with a reverse bias of 5V is measured 10.2mA/W at 1285nm, and a full-width at half maximum of 25nm for the top-illumination RCE photodetector, and 19mA/W at 1305nm, and a full-width at half maximum of 14nm for the bottom-illumination one. The external quantum efficiency of the bottom-illumination RCE photodetector is up to 2.9% at 1305nm with a reverse bias of 25V. The responsivity of the bottom-illumination RCE photodetector is improved by two-fold compared with that of the top-illumination one.
Resumo:
Silicon-based silica waveguide (SiO2/Si) devices have huge applications in optical telecommunication. SiO2 up to 25-mu m thick is necessary for some passive SiO2/Si waveguide devices. Oxidizing porous silicon to obtain thick SiO2 as cladding layer is presented. The experimental results of porous layer and oxidized porous layer formation were given. The relationship between cracking of SiO2 and temperature varying rate was given experimentally. Such conclusions are drawn: oxidation rate of porous silicon is several orders faster than that of bulk silicon; appropriate temperature variation rate during oxidation can prevent SiO2 on silicon substrates from cracking, and 25 mu m thick silicon dioxide layer has been obtained. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
为满足移动环境对非结构化个人信息管理的自然性和高效性的需求,提出一个基于移动设备的个人信息管理系统Ruby.首先分析了移动环境对个人信息管理的需求,描述了系统框架,接着介绍了系统界面和交互过程,并阐述了支持该系统的2个主要技术:非结构化笔记编辑技术和基于笔迹标签的检索技术.对2个技术和整个系统的评估结果表明,该系统能够满足移动环境对自然交互、非结构化信息采集加工及个人信息自然检索的需求.
Resumo:
机会移动传感器网络可应用在野生动物监控,或利用手持设备嵌入的传感器收集城市信息等场景,往往需要将数据从源节点传输到多个基站中的任一个.提出了一个基于虚拟空间的路由机制VSR(virtual space-based routing),采用"存储-携带-转发"的传输模式实现数据收集.每个传感器节点根据与多个sink节点的期望传输延迟映射成高维空间中的一个坐标点,消息传输对应于从源节点移动到空间原点的过程.细粒度的转发决策特性,使VSR自适应于网络的动态变化,具有很好的鲁棒性.此外,VSR机制具有很低的计算和存储开销,非常适合资源受限的传感器节点.两种不同随机特性场景下的模拟实验验证了VSR机制比ZebraNet的基于历史的转发机制和随机转发机制的性能更好.
Resumo:
We show the potential application of Er3+-doped BaF2 nanoparticles prepared from microemulsion technology for 1.5 mu m amplification in telecommunication. Nanoparticles with different sizes of about 8, 10, and 20.5 nm were prepared. The XRD patterns showed the excursion of diffraction peaks. When the particle size is smaller or the diffraction angle is larger, this kind of excursion will be more serious.
Resumo:
Layer-controlled hierarchical flowerlike AgIn(MoO4)(2) microstructures with "clean" surfaces using submicroplates as building blocks without introducing any template have been fabricated through a low-cost hydrothermal method. The near-infrared luminescence of lanthanide ion (Nd, Er, and Yb) doped AgIn(MoO4)(2) microstructures, in the 1300-1600 nm region, was discussed and is of particular interest for telecommunication applications. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, electron diffraction, and photoluminescence spectra were used to characterize these materials.
Resumo:
The ligand Hhfth [4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)hexane-1,3-dione], which contains a heptafluoropropyl group, has been used to synthesize several new ternary lanthanide complexes (Ln = Er, Ho, Yb, Nd) in which the synergistic ligand is 1,10-phenanthroline (phen) or 2,2'-bipyridine (bipy). The two series of complexes are [Ln(hfth)(3)phen] [abbreviated as (Ln)1, where Ln = Er, Ho, Yb] and [Ln(hfth)(3)bipy] [abbreviated as (Ln)2, where Ln = Er, Ho, Yb, Nd]. Members of the two series have been structurally characterized. The growth morphology, diffuse reflectance (DR) spectra, thermogravimetric analyses, and photophysical studies of these complexes are described in detail. After ligand-mediated excitation of the complexes, they all show the characteristic near-infrared (NIR) luminescence of the corresponding Ln(3+) ions (Ln = Er, Ho, Yb, Nd). This is attributed to efficient energy transfer from the ligands to the central Ln(3+) ions, i.e. an antenna effect. The heptafluorinated substituent in the main hfth sensitizer serves to reduce the degree of vibrational quenching. With these NIR-luminescent lanthanide complexes, the luminescent spectral region from 1300 to 1600 nm, which is of particular interest for telecommunication applications, can be covered completely.
Resumo:
This paper provides a system description and preliminary results for an ongoing clinical study currently being carried out at the Mid-Western Regional Hospital, Nenagh, Ireland. The goal of the trial is to determine if wireless inertial measurement technology can be employed to identify elderly patients at risk of death or imminent clinical deterioration. The system measures cumulative movement and provides a score that will help provide a robust early warning to clinical staff of clinical deterioration. In addition the study examines some of the logistical barriers to the adoption of wearable wireless technology in front-line medical care.
Resumo:
Photonic integration has become an important research topic in research for applications in the telecommunications industry. Current optical internet infrastructure has reached capacity with current generation dense wavelength division multiplexing (DWDM) systems fully occupying the low absorption region of optical fibre from 1530 nm to 1625 nm (the C and L bands). This is both due to an increase in the number of users worldwide and existing users demanding more bandwidth. Therefore, current research is focussed on using the available telecommunication spectrum more efficiently. To this end, coherent communication systems are being developed. Advanced coherent modulation schemes can be quite complex in terms of the number and array of devices required for implementation. In order to make these systems viable both logistically and commercially, photonic integration is required. In traditional DWDM systems, arrayed waveguide gratings (AWG) are used to both multiplex and demultiplex the multi-wavelength signal involved. AWGs are used widely as they allow filtering of the many DWDM wavelengths simultaneously. However, when moving to coherent telecommunication systems such as coherent optical frequency division multiplexing (OFDM) smaller FSR ranges are required from the AWG. This increases the size of the device which is counter to the miniaturisation which integration is trying to achieve. Much work was done with active filters during the 1980s. This involved using a laser device (usually below threshold) to allow selective wavelength filtering of input signals. By using more complicated cavity geometry devices such as distributed feedback (DFB) and sampled grating distributed Bragg gratings (SG-DBR) narrowband filtering is achievable with high suppression (>30 dB) of spurious wavelengths. The active nature of the devices also means that, through carrier injection, the index can be altered resulting in tunability of the filter. Used above threshold, active filters become useful in filtering coherent combs. Through injection locking, the coherence of the filtered wavelengths with the original comb source is retained. This gives active filters potential application in coherent communication system as demultiplexers. This work will focus on the use of slotted Fabry-Pérot (SFP) semiconductor lasers as active filters. Experiments were carried out to ensure that SFP lasers were useful as tunable active filters. In all experiments in this work the SFP lasers were operated above threshold and so injection locking was the mechanic by which the filters operated. Performance of the lasers under injection locking was examined using both single wavelength and coherent comb injection. In another experiment two discrete SFP lasers were used simultaneously to demultiplex a two-line coherent comb. The relative coherence of the comb lines was retained after demultiplexing. After showing that SFP lasers could be used to successfully demultiplex coherent combs a photonic integrated circuit was designed and fabricated. This involved monolithic integration of a MMI power splitter with an array of single facet SFP lasers. This device was tested much in the same way as the discrete devices. The integrated device was used to successfully demultiplex a two line coherent comb signal whilst retaining the relative coherence between the filtered comb lines. A series of modelling systems were then employed in order to understand the resonance characteristics of the fabricated devices, and to understand their performance under injection locking. Using this information, alterations to the SFP laser designs were made which were theoretically shown to provide improved performance and suitability for use in filtering coherent comb signals.
Resumo:
Recent years have witnessed a rapid growth in the demand for streaming video over the Internet, exposing challenges in coping with heterogeneous device capabilities and varying network throughput. When we couple this rise in streaming with the growing number of portable devices (smart phones, tablets, laptops) we see an ever-increasing demand for high-definition videos online while on the move. Wireless networks are inherently characterised by restricted shared bandwidth and relatively high error loss rates, thus presenting a challenge for the efficient delivery of high quality video. Additionally, mobile devices can support/demand a range of video resolutions and qualities. This demand for mobile streaming highlights the need for adaptive video streaming schemes that can adjust to available bandwidth and heterogeneity, and can provide us with graceful changes in video quality, all while respecting our viewing satisfaction. In this context the use of well-known scalable media streaming techniques, commonly known as scalable coding, is an attractive solution and the focus of this thesis. In this thesis we investigate the transmission of existing scalable video models over a lossy network and determine how the variation in viewable quality is affected by packet loss. This work focuses on leveraging the benefits of scalable media, while reducing the effects of data loss on achievable video quality. The overall approach is focused on the strategic packetisation of the underlying scalable video and how to best utilise error resiliency to maximise viewable quality. In particular, we examine the manner in which scalable video is packetised for transmission over lossy networks and propose new techniques that reduce the impact of packet loss on scalable video by selectively choosing how to packetise the data and which data to transmit. We also exploit redundancy techniques, such as error resiliency, to enhance the stream quality by ensuring a smooth play-out with fewer changes in achievable video quality. The contributions of this thesis are in the creation of new segmentation and encapsulation techniques which increase the viewable quality of existing scalable models by fragmenting and re-allocating the video sub-streams based on user requirements, available bandwidth and variations in loss rates. We offer new packetisation techniques which reduce the effects of packet loss on viewable quality by leveraging the increase in the number of frames per group of pictures (GOP) and by providing equality of data in every packet transmitted per GOP. These provide novel mechanisms for packetizing and error resiliency, as well as providing new applications for existing techniques such as Interleaving and Priority Encoded Transmission. We also introduce three new scalable coding models, which offer a balance between transmission cost and the consistency of viewable quality.
Resumo:
Recent years have witnessed a rapid growth in the demand for streaming video over the Internet and mobile networks, exposes challenges in coping with heterogeneous devices and varying network throughput. Adaptive schemes, such as scalable video coding, are an attractive solution but fare badly in the presence of packet losses. Techniques that use description-based streaming models, such as multiple description coding (MDC), are more suitable for lossy networks, and can mitigate the effects of packet loss by increasing the error resilience of the encoded stream, but with an increased transmission byte cost. In this paper, we present our adaptive scalable streaming technique adaptive layer distribution (ALD). ALD is a novel scalable media delivery technique that optimises the tradeoff between streaming bandwidth and error resiliency. ALD is based on the principle of layer distribution, in which the critical stream data are spread amongst all packets, thus lessening the impact on quality due to network losses. Additionally, ALD provides a parameterised mechanism for dynamic adaptation of the resiliency of the scalable video. The Subjective testing results illustrate that our techniques and models were able to provide levels of consistent high-quality viewing, with lower transmission cost, relative to MDC, irrespective of clip type. This highlights the benefits of selective packetisation in addition to intuitive encoding and transmission.
Resumo:
info:eu-repo/semantics/published
Resumo:
The present article analyses the preferences of the deaf who use sign language and are users of the TV interpretation service to sign language, as well as the characteristics with which TV channels provide that service in television in Spain. The objective is to establish whether the way in which the aforementioned accessibility service is provided matches the preferences of users or differ from them. The analysis presents the opinion on this service of the deaf that use the Spanish sign language as their first language for communication. A study has also been conducted on the programmes broadcast with sign language during week 10-16/03/2014. The main data collected reveal that the deaf are dissatisfied with broadcasting times. They ask for news programmes with sign language, they would rather have the interpretation carried out by deaf people who use sign language and they prefer that the interpreter is the main image on screen. Concerning the analysis of the programmes broadcast, the study shows that the majority of programmes with sign language are broadcast at night, they are entertainment programmes, the interpretation is carried out by hearing people who use sign language and that their image is displayed in a corner of the screen.