999 resultados para Techno-science
Resumo:
Increasingly societies and their governments are facing important social issues that have science and technology as key features. A number of these socio-scientific issues have two features that distinguish them from the restricted contexts in which school science has traditionally been presented. Some of their science is uncertain and scientific knowledge is not the only knowledge involved. As a result, the concepts of uncertainty, risk and complexity become essential aspects of the science underlying these issues. In this chapter we discuss the nature and role of these concepts in the public understanding of science and consider their links with school science. We argue that these same concepts and their role in contemporary scientific knowledge need to be addressed in school science curricula. The new features for content, pedagogy and assessment of this urgent challenge for science educators are outlined. These will be essential if the goal of science education for citizenship is to be achieved with our students, who will increasingly be required to make personal and collective decisions on issues involving science and technology.
Resumo:
The QUT Extreme Science and Engineering program provides free hands-on workshops to schools, presented by scientists and engineers to students from prep to year 12 in their own classrooms. The workshops are tied to the school curriculum and give students access to professional quality instruments, helping to stimulate their interest in science and engineering, with the aim of generating a greater take up of STEM related subjects in the senior high school years. In addition to engaging students in activities, workshop presenters provide role models of both genders, helping to breakdown preconceived ideas of the type of person who becomes a scientist or engineer and demystifying the university experience. The Extreme Science and Engineering vans have been running for 10 years and as such demonstrate a sustainable and reproducible model for schools engagement. With funding provided through QUT’s Widening Participation Equity initiative (HEPPP funded) the vans which averaged 120 school visits each year has increased to 150+ visits in 2010. Additionally 100+ workshops (hands-on and career focused) have been presented to students from low socio-economic status schools, on the three QUT campuses in 2011. While this is designed as a long-term initiative the short term results have been very promising, with 3000 students attending the workshops in the first six months and teacher and students feedback has been overwhelmingly positive.
Resumo:
How can a holistic approach to library and information science education encompassing vocational and university sectors that meets the future information workforce requirements be achieved? This paper will outline a twelve month national project that considered this very question. Funded by the Australian Learning and Teaching Council (ALTC).
Resumo:
The paper is an outline of work done from 1977-1979 by the authors, as visiting scientists at the Charles Darwin Research Station in the Galapagos Islands, Ecuador.They were funded for three years by the WWF (World Wildlife Fund)and the Bird Preservation Society of UK to study the breeding biology and ethology of Flightless cormorants and the Greater Flamingo. The presentation includes human aspects of living on and travelling between uninhabited islands.
Resumo:
In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants for the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.
Resumo:
Design Science Research (DSR) has emerged as an important approach in Information Systems (IS) research, evidenced by the plethora of recent related articles in recognized IS outlets. Nonetheless, discussion continues on the value of DSR for IS and how to conduct strong DSR, with further discussion necessary to better position DSR as a mature and stable research paradigm appropriate for IS. This paper contributes to address this need, by providing a comprehensive conceptual and argumentative positioning of DSR relative to the core of IS. This paper seeks to argue the relevance of DSR as a paradigm that addresses the core of IS discipline well. Here we use the framework defined by Wand and Weber, to position what the core of IS is.
Resumo:
A Cooperative Collision Warning System (CCWS) is an active safety techno- logy for road vehicles that can potentially reduce traffic accidents. It provides a driver with situational awareness and early warnings of any possible colli- sions through an on-board unit. CCWS is still under active research, and one of the important technical problems is safety message dissemination. Safety messages are disseminated in a high-speed mobile environment using wireless communication technology such as Dedicated Short Range Communication (DSRC). The wireless communication in CCWS has a limited bandwidth and can become unreliable when used inefficiently, particularly given the dynamic nature of road traffic conditions. Unreliable communication may significantly reduce the performance of CCWS in preventing collisions. There are two types of safety messages: Routine Safety Messages (RSMs) and Event Safety Messages (ESMs). An RSM contains the up-to-date state of a vehicle, and it must be disseminated repeatedly to its neighbouring vehicles. An ESM is a warning message that must be sent to all the endangered vehi- cles. Existing RSM and ESM dissemination schemes are inefficient, unscalable, and unable to give priority to vehicles in the most danger. Thus, this study investigates more efficient and scalable RSM and ESM dissemination schemes that can make use of the context information generated from a particular traffic scenario. Therefore, this study tackles three technical research prob- lems, vehicular traffic scenario modelling and context information generation, context-aware RSM dissemination, and context-aware ESM dissemination. The most relevant context information in CCWS is the information about possible collisions among vehicles given a current vehicular traffic situation. To generate the context information, this study investigates techniques to model interactions among multiple vehicles based on their up-to-date motion state obtained via RSM. To date, there is no existing model that can represent interactions among multiple vehicles in a speciffic region and at a particular time. The major outcome from the first problem is a new interaction graph model that can be used to easily identify the endangered vehicles and their danger severity. By identifying the endangered vehicles, RSM and ESM dis- semination can be optimised while improving safety at the same time. The new model enables the development of context-aware RSM and ESM dissemination schemes. To disseminate RSM efficiently, this study investigates a context-aware dis- semination scheme that can optimise the RSM dissemination rate to improve safety in various vehicle densities. The major outcome from the second problem is a context-aware RSM dissemination protocol. The context-aware protocol can adaptively adjust the dissemination rate based on an estimated channel load and danger severity of vehicle interactions given by the interaction graph model. Unlike existing RSM dissemination schemes, the proposed adaptive scheme can reduce channel congestion and improve safety by prioritising ve- hicles that are most likely to crash with other vehicles. The proposed RSM protocol has been implemented and evaluated by simulation. The simulation results have shown that the proposed RSM protocol outperforms existing pro- tocols in terms of efficiency, scalability and safety. To disseminate ESM efficiently, this study investigates a context-aware ESM dissemination scheme that can reduce unnecessary transmissions and deliver ESMs to endangered vehicles as fast as possible. The major outcome from the third problem is a context-aware ESM dissemination protocol that uses a multicast routing strategy. Existing ESM protocols use broadcast rout- ing, which is not efficient because ESMs may be sent to a large number of ve- hicles in the area. Using multicast routing improves efficiency because ESMs are sent only to the endangered vehicles. The endangered vehicles can be identified using the interaction graph model. The proposed ESM protocol has been implemented and evaluated by simulation. The simulation results have shown that the proposed ESM protocol can prevent potential accidents from occurring better than existing ESM protocols. The context model and the RSM and ESM dissemination protocols can be implemented in any CCWS development to improve the communication and safety performance of CCWS. In effect, the outcomes contribute to the realisation of CCWS that will ultimately improve road safety and save lives.
Resumo:
The globalized nature of modern society has generated a number of pressures that impact internationally on countries’ policies and practices of science education. Among these pressures are key issues of health and environment confronting global science, global economic control through multinational capitalism, comparative and competitive international testing of student science achievement, and the desire for more humane and secure international society. These are not all one-way pressures and there is evidence of both more conformity in the intentions and practices of science education and of a greater appreciation of how cultural differences, and the needs of students as future citizens can be met. Hence while a case for economic and competitive subservience of science education can be made, the evidence for such narrowing is countered by new initiatives that seek to broaden its vision and practices. The research community of science education has certainly widened internationally and this generates many healthy exchanges, although cultural styles of education other than Western ones are still insufficiently recognized. The dominance of English language within these research exchanges is, however, causing as many problems as it solves. Science education, like education as a whole, is a strongly cultural phenomenon, and this provides a healthy and robust buffer to the more negative effects of globalization
Resumo:
‘Wearable technology’, or the use of specialist technology in garments, is promoted by the electronics industry as the next frontier of fashion. However the story of wearable technology’s relationship with fashion begins neither with the development of miniaturised computers in the 1970s nor with sophisticated ‘smart textiles’ of the twenty-first century, despite what much of the rhetoric suggests. This study examines wearable technology against a longer history of fashion, highlighted by the influential techno-sartorial experiments of a group of early twentieth century avant-gardes including Italian Futurists Giacomo Balla and F.T. Marinetti, Russian Constructivists Varvara Stepanova and Liubov Popova, and Paris-based Cubist, Sonia Delaunay. Through the interdisciplinary framework of fashion studies, the thesis provides a fuller picture of wearable technology framed by the idea of utopia. Using comparative analysis, and applying the theoretical formulations of Fredric Jameson, Louis Marin and Michael Carter, the thesis traces the appearance of three techno-utopian themes from their origins in the machine age experiments of Balla, Marinetti, Stepanova, Popova and Delaunay to their twenty-first century reappearance in a dozen wearable technology projects. By exploring the central thesis that contemporary wearable technology resurrects the techno-utopian ideas and expressions of the early twentieth century, the study concludes that the abiding utopian impetus to embed technology in the aesthetics (prints, silhouettes, and fabrication) and functionality of fashion is to unify subject, society and environment under a totalising technological order.
Resumo:
With the goal of improving the academic performance of primary and secondary students in Malaysia by 2020, the Malaysian Ministry of Education has made a significant investment in developing a Smart School Project. The aim of this project is to introduce interactive courseware into primary and secondary schools across Malaysia. As has been the case around the world, interactive courseware is regarded as a tool to motivate students to learn meaningfully and enhance learning experiences. Through an initial pilot phase, the Malaysian government has commissioned the development of interactive courseware by a number of developers and has rolled this courseware out to selected schools over the past 12 years. However, Ministry reports and several independent researchers have concluded that its uptake has been limited, and that much of the courseware has not been used effectively in schools. This has been attributed to weaknesses in the interface design of the courseware, which, it has been argued, fails to accommodate the needs of students and teachers. Taking the Smart School Project's science courseware as a sample, this research project has investigated the extent, nature, and reasons for the problems that have arisen. In particular, it has focused on examining the quality and effectivity of the interface design in facilitating interaction and supporting learning experiences. The analysis has been conducted empirically, by first comparing the interface design principles, characteristics and components of the existing courseware against best practice, as described in the international literature, as well as against the government guidelines provided to the developers. An ethnographic study was then undertaken to observe how the courseware is used and received in the classroom, and to investigate the stakeholders' (school principal, teachers and students') perceptions of its usability and effectivity. Finally, to understand how issues may have arisen, a review of the development process has been undertaken and it has been compared to development methods recommended in the literature, as well as the guidelines provided to the developers. The outcomes of the project include an empirical evaluation of the quality of the interface design of the Smart School Project's science courseware; the identification of other issues that have affected its uptake; an evaluation of the development process and, out of this, an extended set of principles to guide the design and development of future Smart School Project courseware to ensure that it accommodates the various stakeholders' needs.
Resumo:
Nanowires (NWs) have attracted intensive researches owing to the broad applications that arise from their remarkable properties. Over the last decade, immense numerical studies have been conducted for the numerical investigation of mechanical properties of NWs. Among these numerical simulations, the molecular dynamics (MD) plays a key role. Herein we present a brief review on the current state of the MD investigation of nanowires. Emphasis will be placed on the FCC metal NWs, especially the Cu NWs. MD investigations of perfect NWs’ mechanical properties under different deformation conditions including tension, compression, torsion and bending are firstly revisited. Following in succession, the studies for defected NWs including the defects of twin boundaries (TBs) and pre-existing defects are discussed. The different deformation mechanism incurred by the presentation of defects is explored and discussed. This review reveals that the numerical simulation is an important tool to investigate the properties of NWs. However, the substantial gaps between the experimental measurements and MD results suggest the urgent need of multi-scale simulation technique.
Resumo:
The Commonwealth Department of Industry, Science and Resources is identifying best practice case study examples of supply chain management within the building and construction industry to illustrate the concepts, innovations and initiatives that are at work. The projects provide individual enterprises with examples of how to improve their performance, and the competitiveness of the industry as a whole.
Resumo:
"There once was a man who aspired to be the author of the general theory of holes. When asked ‘What kind of hole—holes dug by children in the sand for amusement, holes dug by gardeners to plant lettuce seedlings, tank traps, holes made by road makers?’ he would reply indignantly that he wished for a general theory that would explain all of these. He rejected ab initio the—as he saw it—pathetically common-sense view that of the digging of different kinds of holes there are quite different kinds of explanations to be given; why then he would ask do we have the concept of a hole? Lacking the explanations to which he originally aspired, he then fell to discovering statistically significant correlations; he found for example that there is a correlation between the aggregate hole-digging achievement of a society as measured, or at least one day to be measured, by econometric techniques, and its degree of techno- logical development. The United States surpasses both Paraguay and Upper Volta in hole-digging; there are more holes in Vietnam than there were. These observations, he would always insist, were neutral and value-free. This man’s achievement has passed totally unnoticed except by me. Had he however turned his talents to political science, had he concerned himself not with holes, but with modernization, urbanization or violence, I find it difficult to believe that he might not have achieved high office in the APSA." (MacIntyre 1971, 260)