958 resultados para Semantic wikis
Resumo:
Monográfico con el título: 'Wiki y Educación Superior en España (II parte)'.Resumen basado en el de la publicación
Resumo:
Monográfico con el título: 'Wiki y Educación Superior en España (II parte)'.Resumen basado en el de la publicación
Resumo:
Monográfico con el título: 'Wiki y Educación Superior en España (II parte)'. Artículo coeditado con la Revista de Educación a Distancia (RED). Resumen basado en el de la publicación
Resumo:
Monográfico con el título: 'Wiki y Educación Superior en España (II parte)'. Artículo coeditado con la Revista de Educación a Distancia (RED). Resumen basado en el de la publicación
Resumo:
Monográfico con el título: 'Wiki y Educación Superior en España (II parte)'. Artículo coeditado con la Revista de Educación a Distancia (RED). Resumen basado en el de la publicación
Resumo:
Monográfico con el título: 'Wiki y Educación Superior en España (I parte)'. Resumen tomado de la publicación
Resumo:
Resumen tomado de la publicación
Resumo:
Comunicaci??n presentada en las Jornadas sobre Investigaci??n e Innovaci??n en la Educaci??n F??sica escolar celebradas en el CEP de La Laguna, del 2 al 5 de junio de 2010
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
This paper is a review of experiments to investigate the influence of experimental task, level of processing, and time course in speech production via the priming paradigm.
Resumo:
In this paper, we introduce a novel high-level visual content descriptor which is devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt to bridge the so called “semantic gap”. The proposed image feature vector model is fundamentally underpinned by the image labelling framework, called Collaterally Confirmed Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts of the images with the state-of-the-art low-level image processing and visual feature extraction techniques for automatically assigning linguistic keywords to image regions. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicates that our proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models.
Resumo:
The storage and processing capacity realised by computing has lead to an explosion of data retention. We now reach the point of information overload and must begin to use computers to process more complex information. In particular, the proposition of the Semantic Web has given structure to this problem, but has yet realised practically. The largest of its problems is that of ontology construction; without a suitable automatic method most will have to be encoded by hand. In this paper we discus the current methods for semi and fully automatic construction and their current shortcomings. In particular we pay attention the application of ontologies to products and the particle application of the ontologies.
Resumo:
Currently many ontologies are available for addressing different domains. However, it is not always possible to deploy such ontologies to support collaborative working, so that their full potential can be exploited to implement intelligent cooperative applications capable of reasoning over a network of context-specific ontologies. The main problem arises from the fact that presently ontologies are created in an isolated way to address specific needs. However we foresee the need for a network of ontologies which will support the next generation of intelligent applications/devices, and, the vision of Ambient Intelligence. The main objective of this paper is to motivate the design of a networked ontology (Meta) model which formalises ways of connecting available ontologies so that they are easy to search, to characterise and to maintain. The aim is to make explicit the virtual and implicit network of ontologies serving the Semantic Web.