861 resultados para Potential theory (Mathematics).
Resumo:
Over the last three years, in our Early Algebra Thinking Project, we have been studying Years 3 to 5 students’ ability to generalise in a variety of situations, namely, compensation principles in computation, the balance principle in equivalence and equations, change and inverse change rules with function machines, and pattern rules with growing patterns. In these studies, we have attempted to involve a variety of models and representations and to build students’ abilities to switch between them (in line with the theories of Dreyfus, 1991, and Duval, 1999). The results have shown the negative effect of closure on generalisation in symbolic representations, the predominance of single variance generalisation over covariant generalisation in tabular representations, and the reduced ability to readily identify commonalities and relationships in enactive and iconic representations. This chapter uses the results to explore the interrelation between generalisation and verbal and visual comprehension of context. The studies evidence the importance of understanding and communicating aspects of representational forms which allowed commonalities to be seen across or between representations. Finally the chapter explores the implications of the studies for a theory that describes a growth in integration of models and representations that leads to generalisation.
Resumo:
Engaging and motivating students in mathematics lessons can be challenging. The traditional approach of chalk and talk can sometimes be problematic. The new generation of educational robotics has the potential to not only motivate students but also enable teachers to demonstrate concepts in mathematics by connecting concepts with the real world. Robotics hardware and the software are becoming increasing more user-friendly and as a consequence they can be blended in with classroom activities with greater ease. Using robotics in suitably designed activities promotes a constructivist learning environment and enables students to engage in higher order thinking through hands-on problem solving. Teamwork and collaborative learning are also enhanced through the use of this technology. This paper discusses a model for teaching concepts in mathematics in middle year classrooms. It will also highlight some of the benefits and challenges of using robotics in the learning environment.
Resumo:
This paper formulates an analytically tractable problem for the wake generated by a long flat bottom ship by considering the steady free surface flow of an inviscid, incompressible fluid emerging from beneath a semi-infinite rigid plate. The flow is considered to be irrotational and two-dimensional so that classical potential flow methods can be exploited. In addition, it is assumed that the draft of the plate is small compared to the depth of the channel. The linearised problem is solved exactly using a Fourier transform and the Wiener-Hopf technique, and it is shown that there is a family of subcritical solutions characterised by a train of sinusoidal waves on the downstream free surface. The amplitude of these waves decreases as the Froude number increases. Supercritical solutions are also obtained, but, in general, these have infinite vertical velocities at the trailing edge of the plate. Consideration of further terms in the expansions suggests a way of canceling the singularity for certain values of the Froude number.
Decoupled trajectory planning for a submerged rigid body subject to dissipative and potential forces
Resumo:
This paper studies the practical but challenging problem of motion planning for a deeply submerged rigid body. Here, we formulate the dynamic equations of motion of a submerged rigid body under the architecture of differential geometric mechanics and include external dissipative and potential forces. The mechanical system is represented as a forced affine-connection control system on the configuration space SE(3). Solutions to the motion planning problem are computed by concatenating and reparameterizing the integral curves of decoupling vector fields. We provide an extension to this inverse kinematic method to compensate for external potential forces caused by buoyancy and gravity. We present a mission scenario and implement the theoretically computed control strategy onto a test-bed autonomous underwater vehicle. This scenario emphasizes the use of this motion planning technique in the under-actuated situation; the vehicle loses direct control on one or more degrees of freedom. We include experimental results to illustrate our technique and validate our method.
Resumo:
This dissertation is based on theoretical study and experiments which extend geometric control theory to practical applications within the field of ocean engineering. We present a method for path planning and control design for underwater vehicles by use of the architecture of differential geometry. In addition to the theoretical design of the trajectory and control strategy, we demonstrate the effectiveness of the method via the implementation onto a test-bed autonomous underwater vehicle. Bridging the gap between theory and application is the ultimate goal of control theory. Major developments have occurred recently in the field of geometric control which narrow this gap and which promote research linking theory and application. In particular, Riemannian and affine differential geometry have proven to be a very effective approach to the modeling of mechanical systems such as underwater vehicles. In this framework, the application of a kinematic reduction allows us to calculate control strategies for fully and under-actuated vehicles via kinematic decoupled motion planning. However, this method has not yet been extended to account for external forces such as dissipative viscous drag and buoyancy induced potentials acting on a submerged vehicle. To fully bridge the gap between theory and application, this dissertation addresses the extension of this geometric control design method to include such forces. We incorporate the hydrodynamic drag experienced by the vehicle by modifying the Levi-Civita affine connection and demonstrate a method for the compensation of potential forces experienced during a prescribed motion. We present the design method for multiple different missions and include experimental results which validate both the extension of the theory and the ability to implement control strategies designed through the use of geometric techniques. By use of the extension presented in this dissertation, the underwater vehicle application successfully demonstrates the applicability of geometric methods to design implementable motion planning solutions for complex mechanical systems having equal or fewer input forces than available degrees of freedom. Thus, we provide another tool with which to further increase the autonomy of underwater vehicles.
Resumo:
Recent research has begun to address and even compare nascent entrepreneurship and nascent corporate entrepreneurship. An opportunity based view holds great potential to integrate both streams of research, but also presents challenges in how we define corporate entrepreneurship. We extend (corporate) entrepreneurship literature to the opportunity identification phase by providing a framework to classify different types of corporate entrepreneurship. Through analysis of a large dataset on nascent (corporate) entrepreneurship (PSEDII) we show that these corporate entrepreneurs differ largely from each other in terms of human capital. Prior studies have indicated that independent and corporate entrepreneurs pursue different types of opportunities and utilize different strategies. Our findings from the opportunity identification phase challenge those differences and seem to indicate a difference between the opportunities corporate entrepreneurs identify versus the opportunities they exploit.
Resumo:
Background: Mentoring is often proposed as a solution to the problem of successfully recruiting and retaining nursing staff. The aim of this constructivist grounded theory study was to explore Australian rural nurses' experiences of mentoring. Design: The research design used was reflexive in nature resulting in a substantive, constructivist grounded theory study. Participants: A national advertising campaign and snowball sampling were used to recruit nine participants from across Australia. Participants were rural nurses who had experience in mentoring others. Methods: Standard grounded theory methods of theoretical sampling, concurrent data collection and analysis using open, axial and theoretical coding and a story line technique to develop the core category and category saturation were used. To cultivate the reflexivity required of a constructivist study, we also incorporated reflective memoing, situational analysis mapping techniques and frame analysis. Data was generated through eleven interviews, email dialogue and shared situational mapping. Results: Cultivating and growing new or novice rural nurses using supportive relationships such as mentoring was found to be an existing, integral part of experienced rural nurses' practice, motivated by living and working in the same communities. Getting to know a stranger is the first part of the process of cultivating and growing another. New or novice rural nurses gain the attention of experienced rural nurses through showing potential or experiencing a critical incidence. Conclusions: The problem of retaining nurses is a global issue. Experienced nurses engaged in clinical practice have the potential to cultivate and grow new or novice nurses-many already do so. Recognising this role and providing opportunities for development will help grow a positive, supportive work environment that nurtures the experienced nurses of tomorrow.
Resumo:
It is generally agreed that if authentic teacher change is to occur then the tacit knowledge about how and why they act in certain ways in the classroom be accessed and reflected upon. While critical reflection can and often is an individual experience there is evidence to suggest that teachers are more likely to engage in the process when it is approached in a collegial manner; that is, when other teachers are involved in and engaged with the same process. Teachers do not enact their profession in isolation but rather exist within a wider community of teachers. An outside facilitator can also play an active and important role in achieving lasting teacher change. According to Stein and Brown (1997) “an important ingredient in socially based learning is that graduations of expertise and experience exist when teachers collaborate with each other or outside experts” (p. 155). To assist in the effective professional development of teachers, outside facilitators, when used, need to provide “a dynamic energy producing interactive experience in which participants examine and explore the complex components of teaching” (Bolster, 1995, p. 193). They also need to establish rapport with the participating teachers that is built on trust and competence (Hyde, Ormiston, & Hyde, 1994). For this to occur, professional development involving teachers and outside facilitators or researchers should not be a one-off event but an ongoing process of engagement that enables both the energy and trust required to develop. Successful professional development activities are therefore collaborative, relevant and provide individual, specialised attention to the teachers concerned. The project reported here aimed to provide professional development to two Year 3 teachers to enhance their teaching of a new mathematics content area, mental computation. This was achieved through the teachers collaborating with a researcher to design an instructional program for mental computation that drew on theory and research in the field.
Resumo:
The action potential (ap) of a cardiac cell is made up of a complex balance of ionic currents which flow across the cell membrane in response to electrical excitation of the cell. Biophysically detailed mathematical models of the ap have grown larger in terms of the variables and parameters required to model new findings in subcellular ionic mechanisms. The fitting of parameters to such models has seen a large degree of parameter and module re-use from earlier models. An alternative method for modelling electrically exciteable cardiac tissue is a phenomenological model, which reconstructs tissue level ap wave behaviour without subcellular details. A new parameter estimation technique to fit the morphology of the ap in a four variable phenomenological model is presented. An approximation of a nonlinear ordinary differential equation model is established that corresponds to the given phenomenological model of the cardiac ap. The parameter estimation problem is converted into a minimisation problem for the unknown parameters. A modified hybrid Nelder–Mead simplex search and particle swarm optimization is then used to solve the minimisation problem for the unknown parameters. The successful fitting of data generated from a well known biophysically detailed model is demonstrated. A successful fit to an experimental ap recording that contains both noise and experimental artefacts is also produced. The parameter estimation method’s ability to fit a complex morphology to a model with substantially more parameters than previously used is established.
Resumo:
The concept of knowledge-based urban development has first come to the urban planning and development agenda during the very last years of the 20th century as a promising paradigm to support the transformation process of cities into knowledge cities and their societies into knowledge societies. However, soon after the exponentially rapid advancements experienced, during the first decade of the 21st century, particularly, in the domains of economy, society, management and technology along with the severe impacts of climate change, have made the redefinition of the term a necessity. This paper, first, reports the findings of the review of the relatively short but dynamic history of urbanisation experiences of our cities around the globe. The paper, then, focuses on the 21st century urbanisation context and discusses the conceptual base of the knowledge-based development of cities and how this concept found application ground in many parts of the world. Following this, the paper speculates development of future cities by particularly highlighting potential challenges and opportunities that previously have not been fully considered. This paper, lastly, introduces and elaborates how relevant theories support the better conceptualisation of this relatively new, but rapidly emerging paradigm, and redefines it accordingly.
Resumo:
This paper reports a 2-year longitudinal study on the effectiveness of the Pattern and Structure Mathematical Awareness Program (PASMAP) on students’ mathematical development. The study involved 316 Kindergarten students in 17 classes from four schools in Sydney and Brisbane. The development of the PASA assessment interview and scale are presented. The intervention program provided explicit instruction in mathematical pattern and structure that enhanced the development of students’ spatial structuring, multiplicative reasoning, and emergent generalisations. This paper presents the initial findings of the impact of the PASMAP and illustrates students’ structural development.
Resumo:
The Pattern and Structure Mathematical Awareness Program(PASMAP) stems from a 2-year longitudinal study on students’ early mathematical development. The paper outlines the interview assessment the Pattern and Structure Assessment(PASA) designed to describe students’ awareness of mathematical pattern and structure across a range of concepts. An overview of students’ performance across items and descriptions of their structural development are described.
Resumo:
The world’s increasing complexity, competitiveness, interconnectivity, and dependence on technology generate new challenges for nations and individuals that cannot be met by “continuing education as usual” (The National Academies, 2009). With the proliferation of complex systems have come new technologies for communication, collaboration, and conceptualization. These technologies have led to significant changes in the forms of mathematical thinking that are required beyond the classroom. This paper argues for the need to incorporate future-oriented understandings and competencies within the mathematics curriculum, through intellectually stimulating activities that draw upon multidisciplinary content and contexts. The paper also argues for greater recognition of children’s learning potential, as increasingly complex learners capable of dealing with cognitively demanding tasks.
Resumo:
There is unprecedented worldwide demand for mathematical solutions to complex problems. That demand has generated a further call to update mathematics education in a way that develops students’ abilities to deal with complex systems.