Linear stern waves in finite depth channels


Autoria(s): McCue, Scott W.; Stump, David M.
Data(s)

2000

Resumo

This paper formulates an analytically tractable problem for the wake generated by a long flat bottom ship by considering the steady free surface flow of an inviscid, incompressible fluid emerging from beneath a semi-infinite rigid plate. The flow is considered to be irrotational and two-dimensional so that classical potential flow methods can be exploited. In addition, it is assumed that the draft of the plate is small compared to the depth of the channel. The linearised problem is solved exactly using a Fourier transform and the Wiener-Hopf technique, and it is shown that there is a family of subcritical solutions characterised by a train of sinusoidal waves on the downstream free surface. The amplitude of these waves decreases as the Froude number increases. Supercritical solutions are also obtained, but, in general, these have infinite vertical velocities at the trailing edge of the plate. Consideration of further terms in the expansions suggests a way of canceling the singularity for certain values of the Froude number.

Formato

application/pdf

Identificador

http://eprints.qut.edu.au/40050/

Publicador

Oxford University Press

Relação

http://eprints.qut.edu.au/40050/3/40050.pdf

DOI:10.1093/qjmam/53.4.629

McCue, Scott W. & Stump, David M. (2000) Linear stern waves in finite depth channels. Quarterly Journal of Mechanics and Applied Mathematics, 53(4), pp. 629-643.

Direitos

Copyright 2000 Oxford University Press

Fonte

Faculty of Science and Technology; Mathematical Sciences

Palavras-Chave #010201 Approximation Theory and Asymptotic Methods #010207 Theoretical and Applied Mechanics #stern waves #free surface flows #Wiener-Hopf technique #semi-infinite plate
Tipo

Journal Article