898 resultados para NONLINEAR-ANALYSIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work is consideration of an analysis of second-order (nonlinear analysis) applied to e metal towers and flares. The analysis is mainly done using the wind efforts and the weight of the structure. The analysis itself is carried out with the aid of a structural analysis software, SAP2000 where two proposes modeling. The first for the linear effects and the second for the nonlinear effects
Resumo:
This work is consideration of an analysis of second-order (nonlinear analysis) applied to e metal towers and flares. The analysis is mainly done using the wind efforts and the weight of the structure. The analysis itself is carried out with the aid of a structural analysis software, SAP2000 where two proposes modeling. The first for the linear effects and the second for the nonlinear effects
Resumo:
The global attractor of a gradient-like semigroup has a Morse decomposition. Associated to this Morse decomposition there is a Lyapunov function (differentiable along solutions)-defined on the whole phase space- which proves relevant information on the structure of the attractor. In this paper we prove the continuity of these Lyapunov functions under perturbation. On the other hand, the attractor of a gradient-like semigroup also has an energy level decomposition which is again a Morse decomposition but with a total order between any two components. We claim that, from a dynamical point of view, this is the optimal decomposition of a global attractor; that is, if we start from the finest Morse decomposition, the energy level decomposition is the coarsest Morse decomposition that still produces a Lyapunov function which gives the same information about the structure of the attractor. We also establish sufficient conditions which ensure the stability of this kind of decomposition under perturbation. In particular, if connections between different isolated invariant sets inside the attractor remain under perturbation, we show the continuity of the energy level Morse decomposition. The class of Morse-Smale systems illustrates our results.
Resumo:
This paper is dedicated to estimate the fractal dimension of exponential global attractors of some generalized gradient-like semigroups in a general Banach space in terms of the maximum of the dimension of the local unstable manifolds of the isolated invariant sets, Lipschitz properties of the semigroup and the rate of exponential attraction. We also generalize this result for some special evolution processes, introducing a concept of Morse decomposition with pullback attractivity. Under suitable assumptions, if (A, A*) is an attractor-repeller pair for the attractor A of a semigroup {T(t) : t >= 0}, then the fractal dimension of A can be estimated in terms of the fractal dimension of the local unstable manifold of A*, the fractal dimension of A, the Lipschitz properties of the semigroup and the rate of the exponential attraction. The ingredients of the proof are the notion of generalized gradient-like semigroups and their regular attractors, Morse decomposition and a fine analysis of the structure of the attractors. As we said previously, we generalize this result for some evolution processes using the same basic ideas. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we establish the existence of many rotationally non-equivalent and nonradial solutions for the following class of quasilinear problems (p) {-Delta(N)u = lambda f(vertical bar x vertical bar, u) x is an element of Omega(r), u > 0 x is an element of Omega(r), u = 0 x is an element of Omega(r), where Omega(r) = {x is an element of R-N : r < vertical bar x vertical bar < r + 1}, N >= 2, N not equal 3, r >0, lambda > 0, Delta(N)u = div(vertical bar del u vertical bar(N-2)del u) is the N-Laplacian operator and f is a continuous function with exponential critical growth.
Resumo:
The main feature of partition of unity methods such as the generalized or extended finite element method is their ability of utilizing a priori knowledge about the solution of a problem in the form of enrichment functions. However, analytical derivation of enrichment functions with good approximation properties is mostly limited to two-dimensional linear problems. This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional problems with confined plasticity where plastic evolution is gradual. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. Several three-dimensional nonlinear problems based on the rate-independent J (2) plasticity theory with isotropic hardening are solved using the proposed procedure to demonstrate its robustness, accuracy and computational efficiency.
Resumo:
Let (X, parallel to . parallel to) be a Banach space and omega is an element of R. A bounded function u is an element of C([0, infinity); X) is called S-asymptotically omega-periodic if lim(t ->infinity)[u(t + omega) - u(t)] = 0. In this paper, we establish conditions under which an S-asymptotically omega-periodic function is asymptotically omega-periodic and we discuss the existence of S-asymptotically omega-periodic and asymptotically omega-periodic solutions for an abstract integral equation. Some applications to partial differential equations and partial integro-differential equations are considered. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A nonlinear analysis is performed for the purpose of identification of the pitch freeplay nonlinearity and its effect on the type of bifurcation of a two degree-of-freedom aeroelastic system. The databases for the identification are generated from experimental investigations of a pitch-plunge rigid airfoil supported by a nonlinear torsional spring. Experimental data and linear analysis are performed to validate the parameters of the linearized equations. Based on the periodic responses of the experimental data which included the flutter frequency and its third harmonics, the freeplay nonlinearity is approximated by a polynomial expansion up to the third order. This representation allows us to use the normal form of the Hopf bifurcation to characterize the type of instability. Based on numerical integrations, the coefficients of the polynomial expansion representing the freeplay nonlinearity are identified. Published by Elsevier Ltd.
Resumo:
L’attività di ricerca contenuta in questa tesi si è concentrata nello sviluppo e nell’implementazione di tecniche per la co-simulazione e il co-progetto non lineare/elettromagnetico di sistemi wireless non convenzionali. Questo lavoro presenta un metodo rigoroso per considerare le interazioni tra due sistemi posti sia in condizioni di campo vicino che in condizioni di campo lontano. In sostanza, gli effetti del sistema trasmittente sono rappresentati da un generatore equivalente di Norton posto in parallelo all’antenna del sistema ricevente, calcolato per mezzo del teorema di reciprocità e del teorema di equivalenza. La correttezza del metodo è stata verificata per mezzo di simulazioni e misure, concordi tra loro. La stessa teoria, ampliata con l’introduzione degli effetti di scattering, è stata usata per valutare una condizione analoga, dove l’elemento trasmittente coincide con quello ricevente (DIE) contenuto all’interno di una struttura metallica (package). I risultati sono stati confrontati con i medesimi ottenibili tramite tecniche FEM e FDTD/FIT, che richiedono tempi di simulazione maggiori di un ordine di grandezza. Grazie ai metodi di co-simulazione non lineari/EM sopra esposti, è stato progettato e verificato un sistema di localizzazione e identificazione di oggetti taggati posti in ambiente indoor. Questo è stato ottenuto dotando il sistema di lettura, denominato RID (Remotely Identify and Detect), di funzioni di scansione angolare e della tecnica di RADAR mono-pulse. Il sistema sperimentale, creato con dispositivi low cost, opera a 2.5 GHz ed ha le dimensioni paragonabili ad un normale PDA. E’ stato sperimentata la capacità del RID di localizzare, in scenari indoor, oggetti statici e in movimento.
Resumo:
Il collasso di diverse colonne, caratterizzate da danneggiamenti simili, quali ampie fessure fortemente inclinate ad entrambe le estremità dell’elemento, lo schiacciamento del calcestruzzo e l’instabilità dei ferri longitudinali, ha portato ad interrogarsi riguardo gli effetti dell’interazione tra lo sforzo normale, il taglio ed il momento flettente. Lo studio è iniziato con una ricerca bibliografica che ha evidenziato una sostanziale carenza nella trattazione dell’argomento. Il problema è stato approcciato attraverso una ricerca di formule della scienza delle costruzioni, allo scopo di mettere in relazione lo sforzo assiale, il taglio ed il momento; la ricerca si è principalmente concentrata sulla teoria di Mohr. In un primo momento è stata considerata l’interazione tra solo due componenti di sollecitazione: sforzo assiale e taglio. L’analisi ha condotto alla costruzione di un dominio elastico di taglio e sforzo assiale che, confrontato con il dominio della Modified Compression Field Theory, trovata tramite ricerca bibliografica, ha permesso di concludere che i risultati sono assolutamente paragonabili. L’analisi si è poi orientata verso l’interazione tra sforzo assiale, taglio e momento flettente. Imponendo due criteri di rottura, il raggiungimento della resistenza a trazione ed a compressione del calcestruzzo, inserendo le componenti di sollecitazione tramite le formule di Navier e Jourawsky, sono state definite due formule che mettono in relazione le tre azioni e che, implementate nel software Matlab, hanno permesso la costruzione di un dominio tridimensionale. In questo caso non è stato possibile confrontare i risultati, non avendo la ricerca bibliografica mostrato niente di paragonabile. Lo studio si è poi concentrato sullo sviluppo di una procedura che tenta di analizzare il comportamento di una sezione sottoposta a sforzo normale, taglio e momento: è stato sviluppato un modello a fibre della sezione nel tentativo di condurre un calcolo non lineare, corrispondente ad una sequenza di analisi lineari. La procedura è stata applicata a casi reali di crollo, confermando l’avvenimento dei collassi.
Resumo:
Seismic assessment and seismic strengthening are the key issues need to be figured out during the process of protection and reusing of historical buildings. In this thesis the seismic behaviors of the hinged steel structure, a typical structure of historical buildings, i.e. hinged steel frames in Shanghai, China, were studied based on experimental investigations and theoretic analysis. How the non-structural members worked with the steel frames was analyzed thoroughly. Firstly, two 1/4 scale hinged steel frames were constructed based on the structural system of Bund 18, a historical building in Shanghai: M1 model without infill walls, M2 model with infill walls, and tested under the horizontal cyclic loads to investigate their seismic behavior. The Shaking Table Test and its results indicated that the seismic behavior of the hinged steel frames could be improved significantly with the help of non-structural members, i.e., surrounding elements outside the hinged steel frames and infilled walls. To specify, the columns are covered with bricks, they consist of I shape formed steel sections and steel plates, which are clenched together. The steel beams are connected to the steel column by steel angle, thus the structure should be considered as a hinged frame. And the infilled wall acted as a compression diagonal strut to withstand the horizontal load, therefore, the seismic capacity and stiffness of the hinged steel frames with infilled walls could be estimated by using the equivalent compression diagonal strut model. A SAP model has been constructed with the objective to perform a dynamic nonlinear analysis. The obtained results were compared with the results obtained from Shaking Table Test. The Test Results have validated that the influence of infill walls on seismic behavior can be estimated by using the equivalent diagonal strut model.
Resumo:
Steiner’s tube formula states that the volume of an ϵ-neighborhood of a smooth regular domain in Rn is a polynomial of degree n in the variable ϵ whose coefficients are curvature integrals (also called quermassintegrals). We prove a similar result in the sub-Riemannian setting of the first Heisenberg group. In contrast to the Euclidean setting, we find that the volume of an ϵ-neighborhood with respect to the Heisenberg metric is an analytic function of ϵ that is generally not a polynomial. The coefficients of the series expansion can be explicitly written in terms of integrals of iteratively defined canonical polynomials of just five curvature terms.
Resumo:
Objective The neurodevelopmental–neurodegenerative debate is a basic issue in the field of the neuropathological basis of schizophrenia (SCH). Neurophysiological techniques have been scarcely involved in such debate, but nonlinear analysis methods may contribute to it. Methods Fifteen patients (age range 23–42 years) matching DSM IV-TR criteria for SCH, and 15 sex- and age-matched control subjects (age range 23–42 years) underwent a resting-state magnetoencephalographic evaluation and Lempel–Ziv complexity (LZC) scores were calculated. Results Regression analyses indicated that LZC values were strongly dependent on age. Complexity scores increased as a function of age in controls, while SCH patients exhibited a progressive reduction of LZC values. A logistic model including LZC scores, age and the interaction of both variables allowed the classification of patients and controls with high sensitivity and specificity. Conclusions Results demonstrated that SCH patients failed to follow the “normal” process of complexity increase as a function of age. In addition, SCH patients exhibited a significant reduction of complexity scores as a function of age, thus paralleling the pattern observed in neurodegenerative diseases. Significance Our results support the notion of a progressive defect in SCH, which does not contradict the existence of a basic neurodevelopmental alteration. Highlights ► Schizophrenic patients show higher complexity values as compared to controls. ► Schizophrenic patients showed a tendency to reduced complexity values as a function of age while controls showed the opposite tendency. ► The tendency observed in schizophrenic patients parallels the tendency observed in Alzheimer disease patients.
Resumo:
The employment of nonlinear analysis techniques for automatic voice pathology detection systems has gained popularity due to the ability of such techniques for dealing with the underlying nonlinear phenomena. On this respect, characterization using nonlinear analysis typically employs the classical Correlation Dimension and the largest Lyapunov Exponent, as well as some regularity quantifiers computing the system predictability. Mostly, regularity features highly depend on a correct choosing of some parameters. One of those, the delay time �, is usually fixed to be 1. Nonetheless, it has been stated that a unity � can not avoid linear correlation of the time series and hence, may not correctly capture system nonlinearities. Therefore, present work studies the influence of the � parameter on the estimation of regularity features. Three � estimations are considered: the baseline value 1; a � based on the Average Automutual Information criterion; and � chosen from the embedding window. Testing results obtained for pathological voice suggest that an improved accuracy might be obtained by using a � value different from 1, as it accounts for the underlying nonlinearities of the voice signal.