920 resultados para Function of time
Resumo:
Objectives. To determine the stress corrosion susceptibility coefficient, n, of seven dental porcelains (A: Ceramco I; B: Ceramco-II; C: Ceramco-III; D: d.Sign; E: Cerabien; F: Vitadur-Alpha; and G: Ultropaline) after aging in air or artificial saliva, and correlate results with leucite content (LC). Methods. Bars were fired according to manufacturers` instructions and polished before induction of cracks by a Vickers indenter (19.6 N, 20 s). Four specimens were stored in air/room temperature, and three in saliva/37 degrees C. Five indentations were made per specimen and crack lengths measured at the following times: similar to 0; 1; 3; 10; 30; 100; 300; 1000 and 3000 h. The stress corrosion coefficient n was calculated by linear regression analysis after plotting crack length as a function of time, considering that the slope of the curve was (2/(3n + 2)]. Microstructural analysis was performed to determine LC. Results. LC of the porcelains were 22% (A and B); 6% (C); 15% (D); 0% (E and F); and 13% (G). Except for porcelains A and D, all materials showed a decrease in their n values when stored in artificial saliva. However, the decrease was more pronounced for porcelains B, F, and G. Ranking of materials varied according to storage media (in air, porcelain G showed higher n compared to A, while in saliva both showed similar coefficients). No correlation was found between n values and LC in air or saliva. Significance. Storage media influenced the n value obtained for most of the materials. LC did not affect resistance to slow crack growth regardless of the test environment. (c) 2008 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. Evaluate the effect of testing system compliance on polymerization stress and stress distribution of composites. Methods. Composites tested were Filtek Z250 (FZ), Herculite (HL), Tetric Ceram (TC), Helio Fill-AP (HF) and Heliomolar (HM). Stress was determined in 1-mm thick specimens, inserted between two rods of either poly(methyl methacrylate), PMMA, or glass. Experimental nominal stress (sigma(exp)) was calculated by dividing the maximum force recorded 5 min after photoactivation by the cross-sectional area of the rod. Composites` elastic modulus (E) was obtained by three-point bending. Data were submitted to one-way ANOVA/Tukey`s test (alpha = 0.05). Stress distribution on longitudinal (sigma(y)) and transverse (sigma(x)) axes of models representing the composites with the highest and lowest E (FZ and HM, respectively) were evaluated by finite element analysis (FEA). Results. sigma(exp) ranged from 5.5 to 8.8 MPa in glass and from 2.6 to 3.4 MPa in PMMA. Composite ranking was not identical in both substrates, since FZ showed or sigma(exp) statistically higher than HM in glass, while in PMMA FZ showed values similar to the other composites. A strong correlation was found between stress reduction (%) from glass to PMMA and composite`s E (r(2) = 0.946). FEA revealed that system compliance was influenced by the composite (FZ led to higher compliance than HM). sigma(x) distribution was similar in both substrates, while cry distribution showed larger areas of compressive stresses in specimens built on PMMA. Significance. sigma(exp) determined in PMMA was 53-68% lower than in glass. Composite ranking varied slightly due to differences in substrates` longitudinal and transverse deformation. (c) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective: Verify the influence of radiant exposure (H) on composite degree of conversion (DC) and mechanical properties. Methods: Composite was photoactivated with 3, 6, 12, 24, or 48 J/cm(2). Properties were measured after 48-h dry storage at room temperature. DC was determined on the flat surfaces of 6 mm x 2 mm disk-shaped specimens using FTIR. Flexural strength (FS) and modulus (FM) were accessed by three-point bending. Knoop microhardness number (KHN) was measured on fragments of FS specimens. Data were analyzed by one-way ANOVA/Tukey test, Student`s t-test, and regression analysis. Results: DC/top between 6 and 12 J/cm(2) and between 24 and 48 J/cm(2) were not statistically different. No differences between DC/top and bottom were detected. DC/bottom, FM, and KHN/top showed significant differences among all H levels. FS did not vary between 12 and 24 J/cm(2) and between 24 and 48 J/cm(2). KHN/bottom at 3 and 6 J/cm(2) was similar. KHN between top and bottom was different up to 12 J/cm(2). Regression analyses having H as independent variable showed a plateau region above 24 J/cm(2). KHN increased exponentially (top) or linearly (bottom) with DC. FS and FM increased almost linearly with DC/bottom up to 55% conversion. Conclusions: DC and mechanical properties increased with radiant exposure. Variables leveled off at high H levels. (C) 2007 Wiley Periodicals, Inc.
Resumo:
The extraction of teeth involves the elimination of extremely sensitive periodontal mechanoreceptors, which play an important role in oral sensory perception. Objectives: The aim of this study was to evaluate the recovery of interocclusal sensory perception for micro-thickness in individuals with different types of implant-supported prostheses. Materials and Methods: Wearers of complete dentures (CDs) comprised the negative control group (group A, n=17). The experimental group consisted of wearers of prostheses supported by osseointegrated implants (Group B, n=29), which was subsequently divided into 4 subgroups: B(1) (n=5) - implant supported overdentures (ISO) occluding with CD; B(2) (n=6) - implant-supported fixed prostheses (ISFP) occluding with CD; B3 (n=8) - wearers of maxillary and mandibular ISFP, and B(4) (n=10) - ISFP occluding with natural dentition (ND). Individuals with ND represented the positive control group (Group C, n=24). Aluminum foils measuring 10 mu m, 24 mu m, 30 mu m, 50 mu m, 80 mu m, and 104 mu m thickness were placed within the premolar area, adding up to 120 tests for each individual. Results: The mean tactile thresholds of groups A, B(1), B(2), B(3), B(4), and C were 92 mu m, 27 mu m, 27 mu m, 14 mu m, 10 mu m, and 10 mu m, respectively. [Correction added after publication online 18 April 2008: in the preceding sentence 92 mu m, 27 mu m, 14 mu m, 10 mu m and 10 mu m, was corrected to 92 mu m, 27 mu m, 27 mu m, 14 mu m, 10 mu m and 10 mu m.] The Kruskal-Wallis test revealed significant difference among groups (P < 0.05). The Dunn test revealed that group A was statistically different from groups C, B(3), and B(4), and that B(1) and B(2) were statistically different from group C. Conclusion: Progressive recovery of osseoperception as a function of the combination of implant-supported prostheses could be observed. Moreover, ISO and/or ISFP combinations may similarly maximize the recovery of osseoperception.
Resumo:
Phthalates are environmental contaminants used in the production of plastics, cosmetics and medical devices. Studies on the effects of phthalates on female reproductive health are particularly sparse and mostly restricted to high-dose exposure in rats. In the present study, pregnant rats were treated with 100 mg/kg-d of di-eta-butyl-phthalate (DBP) or only the vehicle (control group), from GD 12 to GD 20 for evaluation of reproductive outcomes and fetal gonads analysis (F0), and from GD 12 to PND 21 to evaluate reproductive development and function on F1 female offspring. Results showed that all parameters were comparable between groups, although there was a significant increase in the fetal weight after DBP exposure. However, the body weight at birth was normal. Based on these data we can conclude that, in these experimental conditions, DBP did not disturb the reproductive development or function of female rats. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
KCNQ1 (K(V)LQT1) K+ channels play an important role during electrolyte secretion in airways and colon. KCNQ1 was cloned recently from NaCl-secreting shark rectal glands. Here we study. the properties and regulation of the cloned sK(V)LQT1 expressed in Xenopus oocytes and Chinese hamster ovary (CHO) cells and compare the results with those obtained from in vitro perfused rectal gland tubules (RGT). The expression of sKCNQ1 induced voltage-dependent, delayed activated K+ currents, which were augmented by an increase in intracellular cAMP and Ca2+. The chromanol derivatives 293B and 526B potently inhibited sKCNQ1 expressed in oocytes and CHO cells, but had little effect on RGT electrolyte transport. Short-circuit currents in RGT were activated by alkalinization and were decreased by acidification. In CHO cells an alkaline pH activated and an acidic pH inhibited 293B-sensitive KCNQ1 currents. Noise analysis of the cell-attached basolateral membrane of RGT indicated the presence of low-conductance (
Resumo:
K(V)LQT1 (K(V)LQ1) is a voltage-gated K+ channel essential for repolarization of the heart action potential that is defective in cardiac arrhythmia. The channel is inhibited by the chromanol 293B, a compound that blocks cAMP-dependent electrolyte secretion in rat and human colon, therefore suggesting expression of a similar type of K+ channel in the colonic epithelium. We now report cloning and expression of K(V)LQT1 from rat colon. Overlapping clones identified by cDNA-library screening were combined to a full length cDNA that shares high sequence homology to K(V)LQT1 cloned from other species. RT-PCR analysis of rat colonic musoca demonstrated expression of K(V)LQT1 in crypt cells and surface epithelium. Expression of rK(V)LQT1 in Xenopus oocytes induced a typical delayed activated K+ current. that was further activated by increase of intracellular cAMP but not Ca2+ and that was blocked by the chromanol 293B. The same compound blocked a basolateral cAMP-activated K+ conductance in the colonic mucosal epithelium and inhibited whole cell K+ currents in patch-clamp experiments on isolated colonic crypts. We conclude that K(V)QT1 is forming an important component of the basolateral cAMP-activated K+ conductance in the colonic epithelium and plays a crucial role in diseases like secretory diarrhea and cystic fibrosis.
Resumo:
1. K(V)LQT1 (KCNQ1) is a voltage-gated K+ channel essential for repolarization of the heart action potential Defects in ion channels have been demonstrated in cardiac arrhythmia. This channel is inhibited potently by the chromanol 293B, The same compound has been shown to block cAMP-dependent electrolyte secretion in rat and human colon, Therefore, it was suggested that a K+ channel similar to K(V)LQT1 is expressed in the colonic epithelium. 2, In the present paper, expression of K(V)LQT1 and its function in colonic epithelial cells is described. Reverse transcription-polymerase chain reaction analysis of rat colonic mucosa demonstrated expression of K(V)LQT1 in both crypt cells and surface epithelium. When expressed in Xenopus oocytes, K(V)LQT1 induced a typical delayed activated K+ current. 3, As demonstrated, the channel activity could be further activated by increases in intracellular cAMP. These and other data support the concept that K(V)LQT1 is forming a component of the basolateral cAMP-activated Kf conductance in the colonic epithelium.
Resumo:
It is not possible to make measurements of the phase of an optical mode using linear optics without introducing an extra phase uncertainty. This extra phase variance is quite large for heterodyne measurements, however it is possible to reduce it to the theoretical limit of log (n) over bar (4 (n) over bar (2)) using adaptive measurements. These measurements are quite sensitive to experimental inaccuracies, especially time delays and inefficient detectors. Here it is shown that the minimum introduced phase variance when there is a time delay of tau is tau/(8 (n) over bar). This result is verified numerically, showing that the phase variance introduced approaches this limit for most of the adaptive schemes using the best final phase estimate. The main exception is the adaptive mark II scheme with simplified feedback, which is extremely sensitive to time delays. The extra phase variance due to time delays is considered for the mark I case with simplified feedback, verifying the tau /2 result obtained by Wiseman and Killip both by a more rigorous analytic technique and numerically.
Resumo:
A laboratory scale sequencing batch reactor (SBR) operating for enhanced biological phosphorus removal (EBPR) and fed with a mixture of volatile fatty acids (VFAs) showed stable and efficient EBPR capacity over a four-year-period. Phosphorus (P), poly-beta-hydroxyalkanoate (PHA) and glycogen cycling consistent with classical anaerobic/aerobic EBPR were demonstrated with the order of anaerobic VFA uptake being propionate, acetate then butyrate. The SBR was operated without pH control and 63.67+/-13.86 mg P l(-1) was released anaerobically. The P% of the sludge fluctuated between 6% and 10% over the operating period (average of 8.04+/-1.31%). Four main morphological types of floc-forming bacteria were observed in the sludge during one year of in-tensive microscopic observation. Two of them were mainly responsible for anaerobic/aerobic P and PHA transformations. Fluorescence in situ hybridization (FISH) and post-FISH chemical staining for intracellular polyphosphate and PHA were used to determine that 'Candidatus Accumulibacter phosphatis' was the most abundant polyphosphate accumulating organism (PAO), forming large clusters of coccobacilli (1.0-1.5 mum) and comprising 53% of the sludge bacteria. Also by these methods, large coccobacillus-shaped gammaproteobacteria (2.5-3.5 mum) from a recently described novel cluster were glycogen-accumulating organisms (GAOs) comprising 13% of the bacteria. Tetrad-forming organisms (TFOs) consistent with the 'G bacterium' morphotype were alphaproteobacteria , but not Amaricoccus spp., and comprised 25% of all bacteria. According to chemical staining, TFOs were occasionally able to store PHA anaerobically and utilize it aerobically.
Resumo:
Electrical conductivity versus dopant ionic radius studies in zirconia- and ceria-based, solid oxide fuel cell (SOFC) electrolyte systems have shown that oxygen-ion conductivity is highest when the host and dopant ions are similar in size [J. Am. Ceram. Soc. 48 (1965) 286; Solid State Ionics 37 (1989) 67; Solid State Ionics 5 (1981) 547]. Under these conditions, it is thought that the conduction paths within the crystal lattice become less distorted [Solid State Ionics 8 (1983) 201]. In this study, binary ZrO2-M2O3 unit cells were expanded, via the partial substitution of Ce+4 for Zr+4 into the lattice, in an attempt to identify new, ternary, zirconia/ceria-based electrolyte systems with enhanced electrical conductivity. The compositions Zr0.75Ce0.08M0.17O1.92 (M = Nd, Sm, Gd, Dy, Ho, Y, Yb, Sc) were prepared using traditional solid state techniques. Bulk phase characterisation and precise lattice parameter measurements were performed with X-ray diffraction techniques. Four-probe DC conductivity measurements between 400 and 900 degreesC showed that the dopant-ion radius influenced electrical conductivity. The conductivity versus dopant-ion radius trends previously observed in zirconia-based, binary systems are clearly apparent in the ternary systems investigated in this study. The addition of ceria was found to have a negative influence on the electrical conductivity over the temperature range 400-900 degreesC. It is suggested that distortion of the oxygen-ion conduction path by the presence of the larger M+3 and Ce+4 species (relative to Zr+4) is the reason for the decreasing electrical conductivity as a function of increasing dopant size and ceria addition, respectively. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Plant toxins are substances produced and secreted by plants to defend themselves against predators. In a broad sense, this includes all substances that have a toxic effect on targeted organisms, whether they are microbes, other plants, insects, or higher animals. Plant toxins have a diverse range of structures, from small organic molecules through to proteins. This review gives an overview of the various classes of plant toxins but focuses on an interesting class of protein-based plant toxins containing a cystine knot motif. This structural motif confers exceptional stability on proteins containing it and is associated with a wide range of biological activities. The biological activities and structural stability offer many potential applications in the pharmaceutical and agricultural fields. One particularly exciting prospect is in the use of protein-based plant toxins as molecular scaffolds for displaying pharmaceutically important bioactivities. Future applications of plant toxins are likely to involve genetic engineering techniques and molecular pharming approaches.