981 resultados para Food plants
Resumo:
Plants frequently suffer contaminations by toxigenic fungi, and their mycotoxins can be produced throughout growth, harvest, drying and storage periods. The objective of this work was to validate a method for detection of toxins in medicinal and aromatic plants, through a fast and highly sensitive method, optimizing the joint co-extraction of aflatoxins (AF: AFB1, AFB2, AFG1 and AFG2) and ochratoxin A (OTA) by using Aloysia citrodora P. (lemon verbena) as a case study. For optimization purposes, samples were spiked (n=3) with standard solutions of a mix of the four AFs and OTA at 10 ng/g for AFB1, AFG1 and OTA, and at 6 ng/g of AFB2 and AFG2. Several extraction procedures were tested: i) ultrasound-assisted extraction in sodium chloride and methanol/water (80:20, v/v) [(OTA+AFs)1]; ii) maceration in methanol/1% NaHCO3 (70:30, v/v) [(OTA+AFs)2]; iii) maceration in methanol/1% NaHCO3 (70:30, v/v) (OTA1); and iv) maceration in sodium chloride and methanol/water (80:20, v/v) (AF1). AF and OTA were purified using the mycotoxin-specific immunoaffinity columns AflaTest WB and OchraTest WB (VICAM), respectively. Separation was performed with a Merck Chromolith Performance C18 column (100 x 4.6 mm) by reverse-phase HPLC coupled to a fluorescence detector (FLD) and a photochemical derivatization system (for AF). The recoveries obtained from the spiked samples showed that the single-extraction methods (OTA1 and AF1) performed better than co-extraction methods. For in-house validation of the selected methods OTA1 and AF1, recovery and precision were determined (n=6). The recovery of OTA for method OTA1 was 81%, and intermediate precision (RSDint) was 1.1%. The recoveries of AFB1, AFB2, AFG1 and AFG2 ranged from 64% to 110% for method AF1, with RSDint lower than 5%. Methods OTA1 and AF1 showed precision and recoveries within the legislated values and were found to be suitable for the extraction of OTA and AF for the matrix under study.
Resumo:
Irradiation is being progressively considered as a versatile and effective conservation technique [1]. Based on this premise, our research group has been investigating the effects of different irradiation conditions in several food matrices. Aromatic plants are among the food products that require suitable conservation technologies to expand their use [2]. The effects of irradiation on the four species (Aloysia citrodora, Melissa officinalis, Melittis melissophyllum and Mentha piperita) studied herein were previously evaluated. In the present study, the same species were treated with different doses of electron-beam irradiation (0, 1 and 10 kGy) and several parameters were evaluated. The individual sugars profile was determined by HPLCRI, fatty acids by GC-FID, organic acids by HPLC-PDA and tocopherols by HPLCfluorescence. In general, the evaluated parameters remained practically unchanged, regardless of plant species or the irradiation dose. Regarding the profile of sugars, the major change was a decrease in the content of disaccharides. The most notable variations in organic acids were observed in plant species with the highest content in these molecules, especially the decrease observed in the samples of M. officinalis and M. melissophyllum. Among the tocopherols, the α and β isoforms were more susceptible to radiation, while the application of 1 kGy tended to increase the levels of tocopherols in Aloysia citrodora, while 10 kGy had the same effect on M. melissophyllum. M. piperita sample showed the highest levels of tocopherols, regardless of the dose applied. Finally, with regard to the fatty acids content, the irradiated samples showed higher percentages of monounsaturated fatty acids than the control samples. In general, analyzing the results taking into account the effects described, it can be concluded that the application of irradiation with electron beam at doses 1 and 10 kGy is an effective way to retain biomolecules profile of the studied species.
Resumo:
Vitamins and mineral elements are among the most important phytochemicals due to their important role in the maintenance of human health. Despite these components had already been studied in different plant species, their full characterization in several wild species is still scarce. In addition, the knowledge regarding the in vivo effects of phytochemicals, particularly their bioaccessibility, is still scarce. Accordingly, a membrane dialysis process was used to simulate gastrointestinal conditions in order to assess the potential bioaccessibility of mineral elements in different preparations of Achillea millefolium (yarrow), Laurus nobilis (laurel) and Taraxacum sect. Ruderalia (dandelion). The retention/passage dynamics was evaluated using a cellulose membrane with 34 mm pore. Dandelion showed the highest levels of all studied mineral elements (except zinc) independently of the used formulations (dried plant or infusion), but yarrow was the only species yielding minerals after the dialysis step, either in dried form, or as infusion. In fact, the ability of each evaluated element to cross the dialysis membrane showed significant differences, being also highly dependent on the plant species. Regarding the potential use of these plants as complementary vitamin B9 sources, the detected values were much lower in the infusions, most likely due to the thermolability effect.
Resumo:
The liver is one of the most important organs of human body, being involved in several vital functions and regulation of physiological processes. Given its pivotal role in the excretion of waste metabolites and drugs detoxification, the liver is often subjected to oxidative stress that leads to lipid peroxidation and severe cellular damage. The conventional treatments of liver diseases such as cirrhosis, fatty liver and chronic hepatitis are frequently inadequate due to side effects caused by hepatotoxic chemical drugs. To overcome this problematic paradox, medicinal plants, owing to their natural richness in phenolic compounds, have been intensively exploited concerning their extracts and fraction composition in order to find bioactive compounds that could be isolated and applied in the treatment of liver ailments. The present review aimed to collect the main results of recent studies carried out in this field and systematize the information for a better understanding of the hepatoprotective capacity of medicinal plants in in vitro and in vivo systems. Generally, the assessed plant extracts revealed good hepatoprotective properties, justifying the fractionation and further isolation of phenolic compounds from different parts of the plant. Twenty-five phenolic compounds, including flavonoids, lignan compounds, phenolic acids and other phenolic compounds, have been isolated and identified, and proved to be effective in the prevention and/or treatment of chemically induced liver damage. In this perspective, the use of medicinal plant extracts, fractions and phenolic compounds seems to be a promising strategy to avoid side effects caused by hepatotoxic chemicals.
Resumo:
An essential step in the development of products based on biotechnology is an assessment of their potential economic impacts and safety, including an evaluation of the potential impact of transgenic crops and practices related to their cultivation on the environment and human or animal health. The purpose of this paper is to provide an assessment method to evaluate the impact of biotechnologies that uses quantifiable parameters and allows a comparative analysis between conventional technology and technologies using GMOs. This paper introduces amethod to performan impact analysis associatedwith the commercial release and use of genetically modified plants, the Assessment SystemGMPMethod. The assessment is performed through indicators that are arranged according to their dimension criterion likewise: environmental, economic, social, capability and institutional approach. To perform an accurate evaluation of the GMP specific indicators related to genetic modification are grouped in common fields: genetic insert features, GMplant features, gene flow, food/feed field, introduction of the GMP, unexpected occurrences and specific indicators. The novelty is the possibility to include specific parameters to the biotechnology under assessment. In this case by case analysis the factors ofmoderation and the indexes are parameterized to perform an available assessment.
Resumo:
This paper seeks to address the widespread call in the literature for the cross-cultural examination ( and validation) of accepted concepts within consumer behaviour, such as consumer risk perceptions and information search. The findings of the study provide support for a number of accepted relationships, whilst identifying distinct cross cultural differences in external information search and willingness to buy genetically modified (GM) food products by consumers.
Error, Bias, and Long-Branch Attraction in Data for Two Chloroplast Photosystem Genes in Seed Plants
Resumo:
Sequences of two chloroplast photosystem genes, psaA and psbB, together comprising about 3,500 bp, were obtained for all five major groups of extant seed plants and several outgroups among other vascular plants. Strongly supported, but significantly conflicting, phylogenetic signals were obtained in parsimony analyses from partitions of the data into first and second codon positions versus third positions. In the former, both genes agreed on a monophyletic gymnosperms, with Gnetales closely related to certain conifers. In the latter, Gnetales are inferred to be the sister group of all other seed plants, with gymnosperms paraphyletic. None of the data supported the modern ‘‘anthophyte hypothesis,’’ which places Gnetales as the sister group of flowering plants. A series of simulation studies were undertaken to examine the error rate for parsimony inference. Three kinds of errors were examined: random error, systematic bias (both properties of finite data sets), and statistical inconsistency owing to long-branch attraction (an asymptotic property). Parsimony reconstructions were extremely biased for third-position data for psbB. Regardless of the true underlying tree, a tree in which Gnetales are sister to all other seed plants was likely to be reconstructed for these data. None of the combinations of genes or partitions permits the anthophyte tree to be reconstructed with high probability. Simulations of progressively larger data sets indicate the existence of long-branch attraction (statistical inconsistency) for third-position psbB data if either the anthophyte tree or the gymnosperm tree is correct. This is also true for the anthophyte tree using either psaA third positions or psbB first and second positions. A factor contributing to bias and inconsistency is extremely short branches at the base of the seed plant radiation, coupled with extremely high rates in Gnetales and nonseed plant outgroups. M. J. Sanderson,* M. F. Wojciechowski,*† J.-M. Hu,* T. Sher Khan,* and S. G. Brady
Resumo:
Experiments were undertaken to study drying kinetics of moist cylindrical shaped food particulates during fluidised bed drying. Cylindrical particles were prepared from Green beans with three different length:diameter ratios, 3:1, 2:1 and 1:1. A batch fluidised bed dryer connected to a heat pump system was used for the experimentation. A Heat pump and fluid bed combination was used to increase overall energy efficiency and achieve higher drying rates. Drying kinetics, were evaluated with non-dimensional moisture at three different drying temperatures of 30, 40 and 50o C. Numerous mathematical models can be used to calculate drying kinetics ranging from analytical models with simplified assumptions to empirical models built by regression using experimental data. Empirical models are commonly used for various food materials due to their simpler approach. However problems in accuracy, limits the applications of empirical models. Some limitations of empirical models could be reduced by using semi-empirical models based on heat and mass transfer of the drying operation. One such method is the quasi-stationary approach. In this study, a modified quasi-stationary approach was used to model drying kinetics of the cylindrical food particles at three drying temperatures.
Resumo:
Changes in fluidization behaviour behaviour was characterised for parallelepiped particles with three aspect ratios, 1:1, 2:1 and 3:1 and spherical particles. All drying experiments were conducted at 500C and 15 % RH using a heat pump dehumidifier system. Fluidization experiments were undertaken for the bed heights of 100, 80, 60 and 40 mm and at 10 moisture content levels. Due to irregularities in shape minimum fluidisation velocity of parallelepiped particulates (potato) could not fitted to any empirical model. Also a generalized equation was used to predict minimum fluidization velocity. The modified quasi-stationary method (MQSM) has been proposed to describe drying kinetics of parallelepiped particulates at 30o C, 40o C and 50o C that dry mostly in the falling rate period in a batch type fluid bed dryer.