958 resultados para Equação de Euler
Resumo:
The present study aims to check whether the use of activities mediated by the History of Mathematics can contribute to improve the understanding of resolution the 2nd degree equation for teachers and undergraduates that reproduce methods of solving such equations, uncritically, without domain of the justifications for their actions. For this, we adapted a didactic sequence with activities that aims to cause a rediscovery of resolutive formula of 2nd degree equation through the method known as cut and paste. Finally, we presented the activity module containing the didactic sequence used during the study, as suggestion for use in the classroom, by the math teacher
Resumo:
The present investigation includes a study of Leonhard Euler and the pentagonal numbers is his article Mirabilibus Proprietatibus Numerorum Pentagonalium - E524. After a brief review of the life and work of Euler, we analyze the mathematical concepts covered in that article as well as its historical context. For this purpose, we explain the concept of figurate numbers, showing its mode of generation, as well as its geometric and algebraic representations. Then, we present a brief history of the search for the Eulerian pentagonal number theorem, based on his correspondence on the subject with Daniel Bernoulli, Nikolaus Bernoulli, Christian Goldbach and Jean Le Rond d'Alembert. At first, Euler states the theorem, but admits that he doesn t know to prove it. Finally, in a letter to Goldbach in 1750, he presents a demonstration, which is published in E541, along with an alternative proof. The expansion of the concept of pentagonal number is then explained and justified by compare the geometric and algebraic representations of the new pentagonal numbers pentagonal numbers with those of traditional pentagonal numbers. Then we explain to the pentagonal number theorem, that is, the fact that the infinite product(1 x)(1 xx)(1 x3)(1 x4)(1 x5)(1 x6)(1 x7)... is equal to the infinite series 1 x1 x2+x5+x7 x12 x15+x22+x26 ..., where the exponents are given by the pentagonal numbers (expanded) and the sign is determined by whether as more or less as the exponent is pentagonal number (traditional or expanded). We also mention that Euler relates the pentagonal number theorem to other parts of mathematics, such as the concept of partitions, generating functions, the theory of infinite products and the sum of divisors. We end with an explanation of Euler s demonstration pentagonal number theorem
Resumo:
Among the many methodological resources that the mathematics teacher can use in the classroom, we can cite the History of Mathematics which has contributed to the development of activities that promotes students curiosity about mathematics and its history. In this regard, the present dissertation aims to translate and analyze, mathematically and historically, the three works of Euler about amicable numbers that were writed during the Eighteenth century with the same title: De numeris amicabilibus. These works, despite being written in 1747 when Euler lived in Berlin, were published in different times and places. The first, published in 1747 in Nova Acta Eruditorum and which received the number E100 in the Eneström index, summarizes the historical context of amicable numbers, mentions the formula 2nxy & 2nz used by his precursors and presents a table containing thirty pairs of amicable numbers. The second work, E152, was published in 1750 in Opuscula varii argument. It is the result of a comprehensive review of Euler s research on amicable numbers which resulted in a catalog containing 61 pairs, a quantity which had never been achieved by any mathematician before Euler. Finally, the third work, E798, which was published in 1849 at the Opera postuma, was probably the first among the three works, to be written by Euler
Resumo:
In the Einstein s theory of General Relativity the field equations relate the geometry of space-time with the content of matter and energy, sources of the gravitational field. This content is described by a second order tensor, known as energy-momentum tensor. On the other hand, the energy-momentum tensors that have physical meaning are not specified by this theory. In the 700s, Hawking and Ellis set a couple of conditions, considered feasible from a physical point of view, in order to limit the arbitrariness of these tensors. These conditions, which became known as Hawking-Ellis energy conditions, play important roles in the gravitation scenario. They are widely used as powerful tools for analysis; from the demonstration of important theorems concerning to the behavior of gravitational fields and geometries associated, the gravity quantum behavior, to the analysis of cosmological models. In this dissertation we present a rigorous deduction of the several energy conditions currently in vogue in the scientific literature, such as: the Null Energy Condition (NEC), Weak Energy Condition (WEC), the Strong Energy Condition (SEC), the Dominant Energy Condition (DEC) and Null Dominant Energy Condition (NDEC). Bearing in mind the most trivial applications in Cosmology and Gravitation, the deductions were initially made for an energy-momentum tensor of a generalized perfect fluid and then extended to scalar fields with minimal and non-minimal coupling to the gravitational field. We also present a study about the possible violations of some of these energy conditions. Aiming the study of the single nature of some exact solutions of Einstein s General Relativity, in 1955 the Indian physicist Raychaudhuri derived an equation that is today considered fundamental to the study of the gravitational attraction of matter, which became known as the Raychaudhuri equation. This famous equation is fundamental for to understanding of gravitational attraction in Astrophysics and Cosmology and for the comprehension of the singularity theorems, such as, the Hawking and Penrose theorem about the singularity of the gravitational collapse. In this dissertation we derive the Raychaudhuri equation, the Frobenius theorem and the Focusing theorem for congruences time-like and null congruences of a pseudo-riemannian manifold. We discuss the geometric and physical meaning of this equation, its connections with the energy conditions, and some of its several aplications.
Resumo:
In this work we have elaborated a spline-based method of solution of inicial value problems involving ordinary differential equations, with emphasis on linear equations. The method can be seen as an alternative for the traditional solvers such as Runge-Kutta, and avoids root calculations in the linear time invariant case. The method is then applied on a central problem of control theory, namely, the step response problem for linear EDOs with possibly varying coefficients, where root calculations do not apply. We have implemented an efficient algorithm which uses exclusively matrix-vector operations. The working interval (till the settling time) was determined through a calculation of the least stable mode using a modified power method. Several variants of the method have been compared by simulation. For general linear problems with fine grid, the proposed method compares favorably with the Euler method. In the time invariant case, where the alternative is root calculation, we have indications that the proposed method is competitive for equations of sifficiently high order.
Resumo:
The equations corresponding to Newton-Euler iterative method for the determination of forces and moments acting on the rigid links of a robotic manipulator are given a new treatment using composed vectors for the representation of both kinematical and dynamical quantities. It is shown that Lagrange equations for the motion of a holonomic system are easily found from the composed vectors defined in this note. Application to a simple model of an industrial robot shows that the method developed in these notes is efficient in solving the dynamics of a robotic manipulator. An example is developed, where it is seen that with the application of appropriate control moments applied to each arm of the robot, starting from a given initial position, it is possible to reach equilibrium in a final pre-assigned position.
Resumo:
The aim of this work is to test an algorithm to estimate, in real time, the attitude of an artificial satellite using real data supplied by attitude sensors that are on board of the CBERS-2 satellite (China Brazil Earth Resources Satellite). The real-time estimator used in this work for attitude determination is the Unscented Kalman Filter. This filter is a new alternative to the extended Kalman filter usually applied to the estimation and control problems of attitude and orbit. This algorithm is capable of carrying out estimation of the states of nonlinear systems, without the necessity of linearization of the nonlinear functions present in the model. This estimation is possible due to a transformation that generates a set of vectors that, suffering a nonlinear transformation, preserves the same mean and covariance of the random variables before the transformation. The performance will be evaluated and analyzed through the comparison between the Unscented Kalman filter and the extended Kalman filter results, by using real onboard data.
Resumo:
The objective of this dissertation is the development of a general formalism to analyze the thermodynamical properties of a photon gas under the context of nonlinear electrodynamics (NLED). To this end it is obtained, through the systematic analysis of Maxwell s electromagnetism (EM) properties, the general dependence of the Lagrangian that describes this kind of theories. From this Lagrangian and in the background of classical field theory, we derive the general dispersion relation that photons must obey in terms of a background field and the NLED properties. It is important to note that, in order to achieve this result, an aproximation has been made in order to allow the separation of the total electromagnetic field into a strong background electromagnetic field and a perturbation. Once the dispersion relation is in hand, the usual Bose-Einstein statistical procedure is followed through which the thermodynamical properties, energy density and pressure relations are obtained. An important result of this work is the fact that equation of state remains identical to the one obtained under EM. Then, two examples are made where the thermodynamic properties are explicitly derived in the context of two NLED, Born-Infelds and a quadratic approximation. The choice of the first one is due to the vast appearance in literature and, the second one, because it is a first order approximation of a large class of NLED. Ultimately, both are chosen because of their simplicity. Finally, the results are compared to EM and interpreted, suggesting possible tests to verify the internal consistency of NLED and motivating further developement into the formalism s quantum case
Resumo:
In this paper we analyze the Euler Relation generally using as a means to visualize the fundamental idea presented manipulation of concrete materials, so that there is greater ease of understanding of the content, expanding learning for secondary students and even fundamental. The study is an introduction to the topic and leads the reader to understand that the notorious Euler Relation if inadequately presented, is not sufficient to establish the existence of a polyhedron. For analyzing some examples, the text inserts the idea of doubt, showing cases where it is not fit enough numbers to validate the Euler Relation. The research also highlights a theorem certainly unfamiliar to many students and teachers to research the polyhedra, presenting some very simple inequalities relating the amounts of edges, vertices and faces of any convex polyhedron, which clearly specifies the conditions and sufficient necessary for us to see, without the need of viewing the existence of the solid screen. And so we can see various polyhedra and facilitate understanding of what we are exposed, we will use Geogebra, dynamic application that combines mathematical concepts of algebra and geometry and can be found through the link http://www.geogebra.org
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O objetivo do presente trabalho foi avaliar uma equação de predição das exigências de proteína bruta (PB) para reprodutoras pesadas na fase de produção. O experimento foi realizado com 600 aves reprodutoras pesadas, Hubbard HI-Y, durante o período de 31 a 46 semanas de idade, alojadas em boxes num delineamento experimental inteiramente casualizado com três tratamentos e cinco repetições de 40 aves. Os tratamentos consistiram de: T1- Fornecimento de PB de acordo com o manual da linhagem (controle), T2- Fornecimento de PB de acordo com a equação de predição determinada, utilizando os dados de desempenho médio das aves do tratamento controle para predizer as exigências e T3- Fornecimento de PB de acordo com a equação de predição determinada, utilizando os dados de desempenho de cada parcela experimental para predizer as exigências, onde a equação de predição avaliada foi: PB=2,282.P0,75+0,356.G+0,262.MO, sendo PB a exigência de proteína bruta (g/ave/dia), P o peso corporal (kg), G o ganho de peso (g) e MO a massa de ovos (g). As rações foram formuladas para atender as exigências nutricionais e quando necessário eram incluídos os aminoácidos sintéticos, metionina, lisina, triptofano, treonina e arginina. As aves alimentadas de acordo com a equação ingeriram menores quantidades de proteína (20,8g/dia) quando comparadas às alimentadas de acordo com as recomendações (23,80g), entretanto isto levou a menores pesos dos ovos refletindo no peso dos pintos. A equação de predição proporcionou melhores resultados quanto à eficiência protéica. Assim, concluiu-se que a equação de predição não forneceu a quantidade mínima de proteína bruta para atender as exigências dos aminoácidos não suplementados na dieta.
Resumo:
O objetivo do presente trabalho foi determinar as exigências de proteína para aves reprodutoras pesadas através do método fatorial. A exigência de proteína bruta para mantença (PBm) foi determinada por intermédio da técnica do balanço de nitrogênio por meio de ensaio de metabolismo com aves submetidas a quatro dietas com níveis decrescentes de proteína, proporcionando balanço positivo, próximo a zero e negativo. Para determinar a exigência de proteína bruta para o ganho de peso (PBg) dois experimentos foram conduzidos, sendo que em um, determinou-se as exigências líquidas de nitrogênio e no outro, a eficiência de utilização do nitrogênio para o ganho, por meio de abates semanais de aves no período de 26 a 33 semanas de idade. A exigência de proteína bruta para produção de ovos (PBo) foi determinada através de análises semanais de proteína bruta dos ovos coletados, no período de 31 a 37 semanas de idade, considerando a eficiência de deposição da proteína no ovo. A exigência e eficiência de utilização da proteína para mantença foram 2.282 mg PB/kg0,75/dia e 60,79%; respectivamente. As exigências de PBg e PBo determinadas foram: 356 mg PB/g e 262 mg PB/g, respectivamente, e as eficiências de utilização do nitrogênio, 40 e 46,80%, respectivamente. A equação de predição elaborada para aves reprodutoras pesadas na fase de produção foi: PB=2,282.P0,75+0,356.G+0,262.MO, onde PB é a exigência de proteína bruta (g/ave/dia), P o peso corporal (kg), G o ganho de peso (g/dia) e MO a massa de ovos (g/dia).
Resumo:
In this article we show that for corank 1, quasi-homogeneous and finitely determined map germs f : (C-n, 0)-> (C-3, 0), n >= 3 one can obtain formulae for the polar multiplicities defined on the following stable types of f, f(Delta(f) and f(Sigma(n-2,1)(f), in terms of the weights and degrees of f. As a consequence we show how to compute the Euler obstruction of such stable types, also in terms of the weights and degrees of f.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)