Polar Multiplicities and Euler obstruction of the stable types in weighted homogeneous map germs from C-n to C-3 n >= 3


Autoria(s): Rizziolli, E. C.; Saia, M. J.; Brasselet, J. P.; Damon, J.; Trang, L. D.; Oka, M.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/01/2007

Resumo

In this article we show that for corank 1, quasi-homogeneous and finitely determined map germs f : (C-n, 0)-> (C-3, 0), n >= 3 one can obtain formulae for the polar multiplicities defined on the following stable types of f, f(Delta(f) and f(Sigma(n-2,1)(f), in terms of the weights and degrees of f. As a consequence we show how to compute the Euler obstruction of such stable types, also in terms of the weights and degrees of f.

Formato

723-748

Identificador

http://dx.doi.org/10.1142/9789812706812_0025

Singularities In Geometry and Topology, 2005. Singapore: World Scientific Publ Co Pte Ltd, p. 723-748, 2007.

http://hdl.handle.net/11449/34199

10.1142/9789812706812_0025

WOS:000245764300025

Idioma(s)

eng

Publicador

World Scientific Publ Co Pte Ltd

Relação

Singularities In Geometry and Topology, 2005

Direitos

closedAccess

Palavras-Chave #polar multiplicities #quasi-homogeneous map germs #Euler obstruction of stable types
Tipo

info:eu-repo/semantics/conferencePaper