359 resultados para Yee, Darrell
Resumo:
In this paper, a complete method for finite-difference time-domain modeling of rooms in 2-D using compact explicit schemes is presented. A family of interpolated schemes using a rectilinear, nonstaggered grid is reviewed, and the most accurate and isotropic schemes are identified. Frequency-dependent boundaries are modeled using a digital impedance filter formulation that is consistent with locally reacting surface theory. A structurally stable and efficient boundary formulation is constructed by carefully combining the boundary condition with the interpolated scheme. An analytic prediction formula for the effective numerical reflectance is given, and a stability proof provided. The results indicate that the identified accurate and isotropic schemes are also very accurate in terms of numerical boundary reflectance, and outperform directly related methods such as Yee's scheme and the standard digital waveguide mesh. In addition, one particular scheme-referred to here as the interpolated wideband scheme-is suggested as the best scheme for most applications.
Resumo:
This paper presents methods for simulating room acoustics using the finite-difference time-domain (FDTD) technique, focusing on boundary and medium modeling. A family of nonstaggered 3-D compact explicit FDTD schemes is analyzed in terms of stability, accuracy, and computational efficiency, and the most accurate and isotropic schemes based on a rectilinear grid are identified. A frequency-dependent boundary model that is consistent with locally reacting surface theory is also presented, in which the wall impedance is represented with a digital filter. For boundaries, accuracy in numerical reflection is analyzed and a stability proof is provided. The results indicate that the proposed 3-D interpolated wideband and isotropic schemes outperform directly related techniques based on Yee's staggered grid and standard digital waveguide mesh, and that the boundary formulations generally have properties that are similar to that of the basic scheme used.
Resumo:
Objectives: We sought to replicate the association between the kinesin-like protein 6 (KIF6) Trp719Arg polymorphism (rs20455), and clinical coronary artery disease (CAD).
Background: Recent prospective studies suggest that carriers of the 719Arg allele in KIF6 are at increased risk of clinical CAD compared with noncarriers.
Methods: The KIF6 Trp719Arg polymorphism (rs20455) was genotyped in 19 case-control studies of nonfatal CAD either as part of a genome-wide association study or in a formal attempt to replicate the initial positive reports.
Results: A total of 17,000 cases and 39,369 controls of European descent as well as a modest number of South Asians, African Americans, Hispanics, East Asians, and admixed cases and controls were successfully genotyped. None of the 19 studies demonstrated an increased risk of CAD in carriers of the 719Arg allele compared with noncarriers. Regression analyses and fixed-effects meta-analyses ruled out with high degree of confidence an increase of <2% in the risk of CAD among European 719Arg carriers. We also observed no increase in the risk of CAD among 719Arg carriers in the subset of Europeans with early-onset disease (younger than 50 years of age for men and younger than 60 years of age for women) compared with similarly aged controls as well as all non-European subgroups.
Conclusions: The KIF6 Trp719Arg polymorphism was not associated with the risk of clinical CAD in this large replication study.
Resumo:
We conducted a genome-wide association study testing single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) for association with early-onset myocardial infarction in 2,967 cases and 3,075 controls. We carried out replication in an independent sample with an effective sample size of up to 19,492. SNPs at nine loci reached genome-wide significance: three are newly identified (21q22 near MRPS6-SLC5A3-KCNE2, 6p24 in PHACTR1 and 2q33 in WDR12) and six replicated prior observations1-4 (9p21, 1p13 near CELSR2-PSRC1-SORT1, 10q11 near CXCL12, 1q41 in MIA3, 19p13 near LDLR and 1p32 near PCSK9). We tested 554 common copy number polymorphisms (>1% allele frequency) and none met the pre-specified threshold for replication (P < 10-3). We identified 8,065 rare CNVs but did not detect a greater CNV burden in cases compared to controls, in genes compared to the genome as a whole, or at any individual locus. SNPs at nine loci were reproducibly associated with myocardial infarction, but tests of common and rare CNVs failed to identify additional associations with myocardial infarction risk.
Resumo:
Silicon-on-sapphire (SOS) substrates have been proven to offer significant advantages in the integration of passive and active devices in RF circuits. Germanium on insulator technology is a candidate for future higher performance circuits. Thus the advantages of employing a low loss dielectric substrate other than a silicon-dioxide layer on silicon will be even greater. This paper covers the production of germanium on sapphire (GeOS) substrates by wafer bonding. The quality of the germanium back interface is studied and a tungsten self-aligned gate process MOST process has been developed. High low field mobilities of 450-500 cm2/V-s have been achieved for p-channel MOSTs produced on GeOS substrates. Thick germanium on alumina (GOAL) substrates have also been produced.
Resumo:
This paper aims at providing a better insight into the 3D approximations of the wave equation using compact finite-difference time-domain (FDTD) schemes in the context of room acoustic simulations. A general family of 3D compact explicit and implicit schemes based on a nonstaggered rectilinear grid is analyzed in terms of stability, numerical error, and accuracy. Various special cases are compared and the most accurate explicit and implicit schemes are identified. Further considerations presented in the paper include the direct relationship with other numerical approaches found in the literature on room acoustic modeling such as the 3D digital waveguide mesh and Yee's staggered grid technique.
Resumo:
We have demonstrated a self-aligned process to fabricate organized iron nanowires on a planarized surface with wire dimensions down to 50 nm. Polishing was used to expose an alternating silicon silicon dioxide edge and a dual selective metal deposition process produced the nanowires. The initial selective deposition produced a tungsten layer on the exposed polysilicon regions. The discovery that selective chemical vapor deposition of iron from Fe(CO)(5) precursor on dielectric surfaces over tungsten surfaces is the key factor that enables the self-alignment of the iron nanowires. Dimensions of the wires are determined by the thickness of the thermal oxide. (c) 2007 The Electrochemical Society.