997 resultados para Vehicle dynamics
Resumo:
National Highway Traffic Safety Administration, Vehicle Engineering Research Division, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Vehicle Engineering Research Division, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
"Technical report AFFDL-TR-78-147. Final report for period October 1974-June 1978."
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Prior to the development of a production standard control system for ML Aviation's plan-symmetric remotely piloted helicopter system, SPRITE, optimum solutions to technical requirements had yet to be found for some aspects of the work. This thesis describes an industrial project where solutions to real problems have been provided within strict timescale constraints. Use has been made of published material wherever appropriate, new solutions have been contributed where none existed previously. A lack of clearly defined user requirements from potential Remotely Piloted Air Vehicle (RPAV) system users is identified, A simulation package is defined to enable the RPAV designer to progress with air vehicle and control system design, development and evaluation studies and to assist the user to investigate his applications. The theoretical basis of this simulation package is developed including Co-axial Contra-rotating Twin Rotor (CCTR), six degrees of freedom motion, fuselage aerodynamics and sensor and control system models. A compatible system of equations is derived for modelling a miniature plan-symmetric helicopter. Rigorous searches revealed a lack of CCTR models, based on closed form expressions to obviate integration along the rotor blade, for stabilisation and navigation studies through simulation. An economic CCTR simulation model is developed and validated by comparison with published work and practical tests. Confusion in published work between attitude and Euler angles is clarified. The implementation of package is discussed. dynamic adjustment of assessment. the theory into a high integrity software Use is made of a novel technique basing the integration time step size on error Simulation output for control system stability verification, cross coupling of motion between control channels and air vehicle response to demands and horizontal wind gusts studies are presented. Contra-Rotating Twin Rotor Flight Control System Remotely Piloted Plan-Symmetric Helicopter Simulation Six Degrees of Freedom Motion ( i i)
Resumo:
With the premise that the tourism promotional video “China, Forever” provides a crucial access to understanding how tourism engages in a wider circle of socio-culture formation, this dissertation research approaches tourism by examining communicative practices initiated by “China, Forever”. In doing so, it seeks to reveal two dialogues – firstly, between the discursive construction of tourism representational language and China’s nation-state ideology; secondly, between interpretations from overseas Chinese audiences and nation-state narratives delivered via the tourism media. In analyzing the first dialogue, this dissertation reveals that the pursuit of collective and monolithic national imagery has caused a representational violence – one that is committed by the nation-state ideology operated through the organization of tourism language. The very representational coercion itself, however, signifies the nature of tourism media as a vehicle mediating the global gaze and China’s self-representation; illuminating the fact that China’s nation-state building is only to be understood as deeply-grounded in the complexity of postcolonial politics. Furthermore, in a dialectic view, such finding consolidates the nature of “China, Forever” as a cultural product that actively exists as a component in the overall social fabric, co-creating a wider circle of culture politics together with other genres of media products; thus, calling for a more comprehensive understanding of tourism media at large. In the second approach, this dissertation seeks to understand how the tourism video “China, Forever” mediates the relationship between tourism narratives of the nation-state and overseas Chinese individuals; thus bridging together tourism media and ongoing life experiences of the audiences chosen. The analysis reveals that audiences’ interpretations heavily concentrate on resisting and fragmenting the hegemonic nation-state language in “China, Forever”. While some interviewees seek to decentralize the nation-state perspective from aspects of aesthetics, representational style, and representational subjects in “China, Forever” by incorporating their individual memories and past experiences, to some others, the over-polished glorification of China in the mediated tourism discourse is only coercive to China’s social realities experienced by the individual interviewees - the disheartening contrasts of poverty and affluence as well as other social inequalities. From the perspective of the audience group, the Chinese scholars and students at the University of Illinois interviewed for this dissertation research constitute a cohort of exiled audiences for the tourism video “China, Forever”. The audiences subject themselves to voluntary interpellation, a process in which they find themselves defending, negotiating, and resisting the nation-state representation of China – even though they are not its intended audience and have had no input into its production. Nevertheless, such process is one of identification, in which viewers articulate a subject position from which to speak of their own experiences, dilemmas and desires. The usefulness of tourism media discourse in mediating the nation-state narratives and the individual experience is amplified.
Resumo:
On November 16, 2022, the NASA’s Space Launch System (SLS) has been launched for the first time in the context of Artemis-1 mission where, together with the Orion Multi-Purpose Crew Vehicle, a set of 10 CubeSats have been delivered into a translunar trajectory. Among the small satellites deployed during Artemis-1 there is ArgoMoon, a 6U CubeSat built by the Italian company Argotec and coordinated by Italian Space Agency (ASI). The primary goal of ArgoMoon is to capture images of the Interim Cryogenic Propulsion Stage. The ArgoMoon trajectory has been designed as a highly elliptical geocentric orbit, with several encounters with the Moon. In order to successfully fly ArgoMoon along the designed cis-lunar trajectory, a ground-based navigation system has been developed exploiting the guidance techniques also used for regular deep space missions. The navigation process is subdivided into Orbit Determi- nation (OD) and a Flight Path Control (FPC), and it is designed to follow the reference trajectory, prevent impacts with the Earth and the Moon, intensively test the navigation techniques, and guarantee the spacecraft disposal at the end of the mission. The work done in this thesis has accomplished the navigation of ArgoMoon, covering all aspects of the project life, from pre-launch design and analysis to actual operations. Firstly, the designed navigation process and the pre-mission assessment of its performance will be presented. Then, the results of the ArgoMoon navigation operations performed after the launch in November 2022 will be described in detail by discussing the main encountered challenges and the adopted solutions. The results of the operations confirmed the robustness of the designed navigation which allowed to accurately estimate the trajectory of ArgoMoon despite a series of complex events.
Resumo:
In this thesis, we state the collision avoidance problem as a vertex covering problem, then we consider a distributed framework in which a team of cooperating Unmanned Vehicles (UVs) aim to solve this optimization problem cooperatively to guarantee collision avoidance between group members. For this purpose, we implement a distributed control scheme based on a robust Set-Theoretic Model Predictive Control ( ST-MPC) strategy, where the problem involves vehicles with independent dynamics but with coupled constraints, to capture required cooperative behavior.
Resumo:
As graphene has become one of the most important materials, there is renewed interest in other similar structures. One example is silicene, the silicon analogue of graphene. It shares some of the remarkable graphene properties, such as the Dirac cone, but presents some distinct ones, such as a pronounced structural buckling. We have investigated, through density functional based tight-binding (DFTB), as well as reactive molecular dynamics (using ReaxFF), the mechanical properties of suspended single-layer silicene. We calculated the elastic constants, analyzed the fracture patterns and edge reconstructions. We also addressed the stress distributions, unbuckling mechanisms and the fracture dependence on the temperature. We analysed the differences due to distinct edge morphologies, namely zigzag and armchair.
Resumo:
The role of orbital differentiation on the emergence of superconductivity in the Fe-based superconductors remains an open question to the scientific community. In this investigation, we employ a suitable microscopic spin probe technique, namely Electron Spin Resonance (ESR), to investigate this issue on selected chemically substituted BaFe2As2 single crystals. As the spin-density wave (SDW) phase is suppressed, we observe a clear increase of the Fe 3d bands anisotropy along with their localization at the FeAs plane. Such an increase of the planar orbital content is interestingly independent of the chemical substitution responsible for suppressing the SDW phase. As a consequence, the magnetic fluctuations in combination with this particular symmetry of the Fe 3d bands are propitious ingredients for the emergence of superconductivity in this class of materials.