1000 resultados para Problemas de matemática
Resumo:
Realizado en la Facultad de Económicas de la Universidad de Valladolid, por 2 profesores del centro, para la asignatura de Métodos Matemáticos de la Economía. El objeto del proyecto lo constituye no la asignatura sino una parte nuclear de la misma (la Optimización Matemática), que ha sido impartida a lo largo del bienio 2003/2004 por los profesores miembros del proyecto. El fin perseguido ha sido dotar al alumno de un papel activo en la tarea docente y que sea de forma interactiva en la medida de lo posible. La metodología seguida ha sido tipo feedback, mediante la que el alumno puede modificar su conocimiento de la materia mediante ensayos y errores. En la primera fase del proyecto, se ha elaborado el material necesario para poder llevar a cabo el desarrollo de la materia (esquemas teóricos, listas de problemas, etc.). La fase intermedia ha contado con material on line del que el alumno dispone y con el que puede autoevaluarse. En la fase final, el alumno puede subsanar errores o carencias mediante la orientación del profesor. Además de la posibilidad de acceder a todo el material a través de la Web de la asignatura, se ha proporcionado a los alumnos direcciones de Internet mediante las cuales acceder a bibliografía, programas y sistema de examen. La valoración ha sido muy positiva: los índices de alumnos aprobados y las encuestas docentes externas sobre idoneidad de los profesores realizadas por los estudiantes lo avalan.
Resumo:
Este proyecto educativo, no publicado, cuenta con fichas elaboradas que están destinadas a los alumnos del tercer ciclo de Primaria. Fecha de finalización tomada del código del documento
Resumo:
El proyecto ha sido realizado por tres profesores del Departamento de Matemática Aplicada a la Técnica de la Escuela Universitaria Politécnica de la Universidad de Valladolid. Sus objetivos inciden en el binomio enseñanza aprendizaje, la elaboración del material pretende: mejorar la enseñanza, modificar las pautas de aprendizaje, propiciar la participación del alumno, facilitar su trabajo. Se ha analizado el estado de la matemática discreta en múltiples universidades españolas y se ha elaborado el material, objetivo prioritario del proyecto, que cubre exhaustivamente el programa impartido a los alumnos con: teoría, ejemplos, ejercicios simples, bibliografía y amplia colección de problemas.
Resumo:
1.- Medir los efectos del Programa Radiofónico Matemática Interactiva, por los logros del aprendizaje matemático en los alumnos de segundo grado de Educación Básica, que estudian en Escuelas Públicas dentro del área metropolitana de Caracas. 2.- Elaborar un instrumento cuestionario, que sirva para medir los conocimientos matemáticos de los alumnos de segundo grado, previa operacionalización de las variables. 3.- Analizar curricularmente el Programa Matemática Interactiva del CENAMEC. 4.- Interpretar desde el punto de vista epistemológico la Filosofía del Programa Matemática Interactiva. 5.- Elaborar un instrumento- cuestionario que sirva para medir los conocimientos matemáticos de los alumnos de segundo grado, previa operacionalización de las variables. 6.- Evaluar el aprendizaje matemático de un grupo de alumnos de segundo grado pertenecientes a la Escuela Básica 'Dr. Nicolás José Mendible' participante del programa Matemática Interactiva a través de una serie de pruebas al inicio y final del curso. 7.- Comprobar el nivel de razonamiento matemático de los alumnos de escuelas públicas de segundo grado de educación básica que están incorporados al programa frente a aquellos que no lo están. Muestra: 100 sujetos con edades de 6 a 11 años, que cursan segundo grado de la primera etapa de la Educación Básica (primero a tercer curso) pertenecientes a dos escuelas públicas del distrito número 4 de Caracas. Las escuelas básicas del Distrito escolar número 4, pertenecen al barrio el Cementerio; del área metropolitana de Caracas, que consta de 75 escuelas en 28 de ellas se lleva a cabo el Programa Matemática Interactiva y en 47 no se aplica el programa. Aplicación pretest, noviembre 1998. verificación de la situación Postest, junio 1999. Evaluación final para establecer el impacto de la variable independiente (empleo por radio). Cuestionario de 20 items de opción múltiple que comprende ejercicios de cálculo y problemas de solución rápida. T de Student y análisis de varianza. El programa Matemática Interactiva para la Educación Básica está dirigido a lograr un mayor rendimiento del alumno, incrementar la efectividad de la labor del docente y fomentar una actitud positiva de los alumnos hacia la materia. Es un programa diseñado para elevar la calidad de la enseñanza de matemáticas en la Primera Etapa de la Educación Básica, combina la audición activa de encuentros radiofónicos con la reutilización de actividades en el aula, para desarrollar los contenidos propios de la asignatura. La utilización del programa Matemática Interactiva en el aula produce efectos positivos en el aprendizaje matemático de los alumnos y en la transferencia de resolución de problemas en la Educación Básica; efectos que no son consecuencia del empleo del medio radiofónico en sí mismo, sino que su valor educativo depende del contexto en el que se introduce y de la adecuación a las necesidades e intereses del grupo, así como a las características del medio utilizado y las que el docente haga de él, dentro de su actividad didáctica en el aula. Los resultados en el pretest en ambos grupos indican que se encontraban en condiciones similares respecto al conocimiento matemático. La investigación permite obtener las siguientes conclusiones: 1.- El diseño metodológico empleado permite ver cómo influye el Programa Matemática Interactiva en el proceso de enseñanza aprendizaje de los alumnos. 2.- El instrumento diseñado para la investigación ha demostrado ser pertinente para los contenidos del programa. 3.- La aplicación del test y postest a los grupos control y experimental ha aportado resultados significativos que refuta las hipótesis planteadas. 4.- Aunque la muestra no es muy numerosa, sí es representativa de la población estudiada. 5.- El análisis de las variables: sexo, edad y nivel socioeconómico ha mostrado no ser influyentes en el aprendizaje de los alumnos. 6.- Los resultados obtenidos han demostrado resultados significativos del grupo control, mostrando que el Programa Matemática Interactiva influye en el aprendizaje estudiantil de las matemáticas.
Resumo:
Investigar si los diferentes tipos de problemas condicionan el perfil metacognitivo de futuros profesores de matemáticas, teniendo presentes las categorías predefinidas propuestas en el modelo de Lester: orientación, organización, ejecución y verificación. Analizar e interpretar procesos metacognitivos de futuros profesores de matemáticas en la actividad de resolución de problemas. Reflexionar sobre la utilización de la tecnología de vídeo en la investigación educativa, respecto al registro de la verbalización de los pensamientos en el acto de resolución de problemas por parte de futuros profesores de matemáticas. Futuros profesores de matemáticas que cursen el tercer año de carrera y que posean formación en el nivel de resolución de problemas y en metacognición. Se han constituido dos grupos de 3 miembros cada uno, el grupo A formado por sujetos que se consideren buenos solucionadores de problemas de matemáticas y les guste trabajar en equipo, el grupo B constituido por sujetos que no se consideren buenos solucionadores de problemas de matemáticas y no les guste trabajar en equipo. La constitución de los equipos se realiza según las respuestas dadas a un cuestionario concebido para tal fin. Se ha seguido un estudio exploratorio sobre la temática para definir mejor el problema de estudio y describir los comportamientos observables. La investigación provoca en los sujetos del estudio la explicitación de procesos cognitivos y metacognitivos. Cuestionario inicial para analizar la autopercepción de los sujetos respecto a la solución de problemas y su capacidad para trabajar en grupo, se trata de una escala Likert de 5 opciones. Registros en vídeo y hojas de actividades de los problemas. Observación descriptiva de los vídeos grabados y registros terminológicos de los sujetos para recoger el los pensamientos en alto de los sujetos y recoger la verbalización del proceso de resolución de problemas seguido por los sujetos para identificar las intervenciones de nivel metacognitivo. Las transcripciones de los vídeos se realizan en referencia a las cuatro categorías del modelo de Lester: orientación, organización, ejecución y comprobación. Categorización y análisis estadístico de las escalas y análisis del contenido de las intervenciones orales. La investigación analiza la temática de la resolución de problemas y su importancia en la disciplina de matemáticas, concretando la investigación en los futuros profesores de esta disciplina. Se aborda el tema de la metacognición y su importancia en los procesos de enseñanza y aprendizaje de las matemáticas; analiza la utilización del vídeo como recurso para la investigación y las posibilidades que ofrece para la investigación de casos de resolución de problemas y de los procesos metacognitivos en los sujetos analizados. El análisis de los resultados indica que no se ha encontrado en la muestra ningún sujeto que no se considere buen solucionador de problemas de matemáticas y no le guste trabajar en equipo. Por lo tanto los grupos quedaron formados de la siguiente forma: el grupo A por sujetos con altos valores en las categorías de resolución de problemas y trabajo en grupo y el grupo B por sujetos con valoraciones medias. El análisis de los datos indica que los dos grupos manifiestas patrones de desempeño metacognitivo ligeramente diferentes el uno del otro. El número de problemas involucrado en el estudio es reducido, sería interesante someter a estos dos grupos a nuevos problemas para verificar si esa tendencia se mantiene o no; sería deseable someter a los grupos a una reflexión acerca del porqué existe una categoría donde ocurren menos intervenciones metacognitivas que en las otras. No parece existir una relación muy estrecha entre los tipos de problemas y el número de intervenciones metacognitivas resultante de las resoluciones, en cambio parece observarse una relación directa entre el nivel de dificultad sentido en la resolución de problemas y el número de intervenciones metacognitivas resultante. Respecto a la grabación con vídeo se constata su utilidad para el registro de intervenciones metacognitivas ya que facilita que se puedan describir todos los procesos de resolución llevados a cabo por los grupos en la totalidad de problemas. Al mismo tiempo se manifiesta que la presencia de las cámaras no fue un factor de inhibición. Se destacan los bajos niveles de éxito logrados en la resolución de lo 6 problemas abordados, a pesar de esperarse unos niveles superiores de éxito en el grupo A, sin embargo el grupo B consiguió puntuaciones superiores en la escala holística de Charles. Se considera que estos resultados son consecuencia del escaso hábito de los futuros profesores para resolver en grupo problemas de este género. Es necesario profundizar en la investigación sobre la manera en la que se comportan cognitivamente los profesores de matemáticas y es necesario desarrollar programas de formación inicial de profesores de matemáticas que contemplen un componente de metacognición fuerte.
Resumo:
Problemas y dificultades en el aprendizaje matemático de los niños y niñas en la Educación Primaria. Cuatro aulas de matemáticas de tercer ciclo de la Educación Primaria, con la presencia de niños y niñas de clase social baja y con graves problemas en los aprendizajes académicos. Se adopta una amplia perspectiva: el contexto donde se producen los aprendizajes, los antecedentes socioculturales (género y clase social) de los estudiantes y las dificultades cognitivas que experimentan algunos de ellos. El trabajo en grupo muestra como en un contexto en el que no se jerarquicen las capacidades y aptitudes de los estudiantes, en el que exista una amplia concepción de competencia matemática y en el que se considera a todos y todas capaces de acceder al conocimiento matemático, los estudiantes con problemas o dificultades en matemáticas resuelven tareas matemáticas complejas utilizando procedimientos informales y están dispuestas a discutir y hablar sobre la resolución de estas tareas con compañeras y compañeros sin problemas o dificultades en matemáticas. Pruebas y cuestionarios a los estudiantes, entrevistas al profesorado, un relato de vida de una niña con dificultades en matemáticas, trabajo fuera del aula con algunas de estas estudiantes y trabajo en grupos con niños y niñas con y sin problemas o dificultades en matemáticas. Para la prueba se organizaron dos grupos de trabajo, uno por cada sexto de Primaria, al que asistieron niños y niñas con problemas y dificultades en el aprendizaje de las matemáticas junto a compañeros que no fracasan en matemáticas. Durante los primeros meses fueron dos sesiones de 55 minutos a la semana y se continuó con una sesión a la semana, hasta final de curso. Las sesiones se llevaron a cabo los Lunes y los Miércoles. El cuestionario dirigido a los estudiantes era de 20 preguntas; unas cuestiones eran personales, otras sobre el colegio, otras sobre los estudiantes y las últimas cuestiones eran referidas a las matemáticas. Se recogieron diversos tipos de documentos: libros de texto, programaciones del aula, Plan de Centro, libretas, controles y hojas del trabajo realizado por los estudiantes en grupo. 1)Los resultados en Matemáticas son menores que en otras materias como Lengua y Conocimiento del Medio, presenta peores resultados. 2) Tras los estudios realizados se observa que los resultados obtenidos en Matemáticas son muy bajos, lo que indica que los alumnos no han adquirido una buena parte de los conceptos y procedimientos que se supone deben aprender, ni tienen un nivel alto en resolución de problemas.3) Hay una gran variación dentro de cada país y entre los diversos países. 4) No existen diferencias entre los niños y las niñas en cuanto a su preferencia por las matemáticas . En definitiva, se intenta exponer algunas consideraciones que puedan contribuir a eliminar algunos obstáculos con los que se enfrentan los niños y niñas. Se trata de establecer una continuidad entre los diferentes aspectos: las matemáticas escolares, las aulas de matemáticas, equidad en matemáticas, los niños y niñas de las clases más desfavorecidas, las dificultades cognitivas en el aprendizaje de las matemáticas y las niñas ante sus dificultades de aprendizaje matemático.
Resumo:
Plantea el problema de explicar el conocimiento de las entidades matemáticas, el desarrollo de la facultad de la intuición matemática. Se parte de la existencia de las entidades abstractas y de su independencia de nosotros; a partir de aquí y tras constatar las dificultades de esta postura, se va matizando poco a poco, hasta llegar a un tipo de realismo mucho más moderado. Propuestas y dilemas. Dilema de Benacerraf-Field, la propuesta de Penelope Maddy, propuesta de los denominados neo-fregeanos, propuesta de Michale Dummett, propuesta de Hilary Putnam, Crispin Wright. Los problemas epistemológicos representan el mayor obstáculo para el realismo en matemáticas. Las opciones anti-realistas por el contrario tienen dificultades para desarrollar una noción de verdad matemática que no rompa la uniformidad semántica con el ámbito empírico. Se defiende una postura moderada, libre de connotaciones metafísicas. Como conclusión final, se defiende la necesidad de adoptar un tipo de realismo moderado para las matemáticas (pero no sólo para ellas), en el cual el problema del conocimiento pueda ser visto como un problema de objetividad. Se defiende, además, que la existencia de las entidades matemáticas no es un elemento indispensable: es la objetividad matemática la que es indispensable para la aplicación de las matemáticas al resto de la ciencia. De esta manera, el problema central pasa ahora a ser la búsqueda de la justificación para la objetividad matemática, entendida como la objetividad en la elección de los axiomas básicos. En este sentido, se defiende la combinación de un tipo de justificación externa, a través de la aplicación y utilidad de estos axiomas básicos para el desarrollo de la propia disciplina de la que formen parte, y un tipo de justificación interna, por medio de la cual se explique satisfactoriamente la fiabilidad de las creencias de los matemáticos en estos axiomas básicos y por lo tanto la verdad de los mismos. Para este último, se propone la adopción de los conceptos dependientes de la respuesta en el ámbito matemático..
Resumo:
Resumen tomado de la revista. La publicación recoge resumen en Inglés
Resumo:
La obra recoge todos los problemas y soluciones de los mismos propuestos en las fases comarcales y autonómicas de las Olimpiadas Matemáticas celebradas en Extremadura desde 1992 hasta 1997, junto con las de la VI Olimpiada Nacional. El objetivo de la obra es presentar un material de orientación y refuerzo que ayude a los alumnos a enfocar las Matemáticas como una asignatura amena y divertida.
Resumo:
Resumen basado en el que aporta la revista.
Resumo:
Proyecto de creación de talleres, iniciado el curso pasado, que se centra en la elaboración de diferentes estrategias encaminadas a la socialización y al desarrollo de valores socio-emocionales que faciliten la adaptación e integración social de un alumnado, principalmente de raza gitana, que se desenvuelve en un entorno marginal (Barrio del Pozo del Huevo). Los objetivos son: promover la asunción de responsabilidades y toma de decisiones; fomentar alternativas para un empleo adecuado del ocio y tiempo libre; interiorizar hábitos elementales de convivencia y respeto hacia los demás y hacia el entorno; adquirir habilidades útiles para su posterior inserción profesional en la sociedad; y desarrollar sus capacidades motrices. Para ello, a través de los cuatro talleres creados (huerto, madera, experiencias y educación física), se trabajan de forma lúdica los objetivos y contenidos de las distintas áreas curriculares. Así, en el taller de experiencias, dirigido al ciclo inicial de EGB, se realizan actividades de carácter global, mediante la creación de rincones de trabajo (lectura, composición, expresión matemática, plástica y dinámica, y huerto), como juegos de prelectura, preescritura, técnicas de manipulación, juegos lógicos, expresión corporal y psicomotricidad. En el taller de huerto, dirigido a todo el alumnado del centro, se continúa la labor iniciada cursos anteriores centrada en el mantenimiento del huerto y con la preparación de nuevos terrenos y semilleros. El taller de madera, dirigido al ciclo superior, que se organiza en torno a agrupamientos flexibles y al trabajo en equipo, consiste en la aplicación práctica de lo trabajado en el resto de las áreas (carácter técnico-manual). Y, por último, en el taller de educación física, dirigido a todo el alumnado, se realiza una adaptación de los programas a las necesidades del alumno, haciendo hincapié en los objetivos de carácter social y primando el desarrollo psicomotor y el aprovechamiento del tiempo de ocio. La evaluación de la experiencia se considera muy positiva, aunque señala la necesidad de seguir trabajando para alcanzar los objetivos planteados ya que su propuesta es a largo plazo. Se presentan memorias individuales por talleres..
Resumo:
Los objetivos son fomentar la sensibilidad y valoración crítica ante las informaciones y mensajes de naturaleza numéricas; potenciar la curiosidad e interés hacia problemas matemáticos; y confiar en las propias capacidades para afrontar problemas. La metodología se basa en el trabajo en grupo y en la coordinación entre este centro y el Instituto Juan de Mairena de San Sebastián de los Reyes. Durante el segundo y tercer trimestre se realizan actividades que mejoren la imagen de las Matemáticas y se elabora una revista con todos los trabajos, actividades y artículos relacionados con las Matemáticas. Entre los temas tratados destacan las Matemáticas en otras Ciencias; Historia de las Matemáticas, con el papel de las mujeres; Matemáticas en la Literatura; en el Arte; la imagen de las Matemáticas; juegos; y Matemáticas y ordenadores. Para evaluar, los alumnos contestan a una encuesta sobre las actividades realizadas y el contenido de la revista.
Resumo:
El proyecto, en el que colaboran cuatro institutos de Torrejón de Ardoz, quiere sacar las matemáticas fuera del aula con la organización de actividades lúdicas. Los objetivos son acercar las matemáticas a los alumnos; realizar una exposición de materiales didácticos; y utilizar las nuevas tecnologías e internet para difundir las matemáticas. Los profesores entregan los materiales al CPR que los distribuye entre los participantes para que estos organicen y renueven cada quince días la exposición con cuatro biografías y fotos, tres problemas y láminas o puzzles. Además con los materiales elaborados se confecciona la web. Se evalúa la participación de los alumnos, el grado de satisfacción de profesores y la calidad de los materiales.
Resumo:
La finalidad principal de este proyecto es crear una comunidad virtual sobre Matemáticas, dentro de la página web del colegio. Los objetivos son reforzar la adquisición de contenidos matemáticos; utilizar las nuevas tecnologías; fomentar el trabajo reflexivo, autónomo y cooperativo; participar en una actividad global dinamizadora; optimizar los recursos existentes en el centro; y crear materiales didácticos en soporte informático. La comunidad, que recibe el nombre de Menudo problema, es un punto de encuentro para los alumnos, donde pueden descargar programas para el diseño de contenidos digitales y realizar ejercicios matemáticos clasificados por niveles. Los alumnos, organizados en grupos, elaboran problemas matemáticos que después son editados en soporte informático y alojados en la comunidad virtual. Además, cada grupo acude un día a la semana al aula de informática para participar en la comunidad. Se incluyen en anexos unas instrucciones para la navegación y unas fichas de evaluación para profesores y alumnos. También se adjunta un cuaderno con información sobre el programa informático Hot Potatoes y otro con una recopilación de problemas matemáticos elaborados por los alumnos. Por último, se aporta un CD con el diseño de la comunidad virtual y un curso sobre la aplicación informática Jclic.
Resumo:
Ante una situación generalizada de falta de ilusión por el estudio de las matemáticas, se pone en marcha un proyecto que pretende dar una visión de las matemáticas fuera de lo estrictamente curricular y abordarlas de un modo lúdico. El objetivo es que los alumnos sean capaces de trasladar las estrategias que han aprendido en clase a la vida diaria. Para ello se realizan actividades como la elaboración de una revista matemática; un concurso de problemas; la participación en el concurso de primavera organizado por la Universidad Complutense de Madrid; la elaboración de un libro de cuentos matemáticos; la creación de un Aula de Ampliación para los alumnos que muestran más interés y actitudes para las matemáticas; y un Aula de Apoyo para los que están más retrasados en las clases. Además se crea la Biblioteca Matemática y se abre un correo electrónico para recibir las sugerencias de los alumnos. Se adjuntan ejemplares de la revista, y del libro de cuentos.