500 resultados para PDO, hyperbolic fibration


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that a particular free-by-cyclic group has CAT(0) dimension equal to 2, but CAT(-1) dimension equal to 3. We also classify the minimal proper 2-dimensional CAT(0) actions of this group; they correspond, up to scaling, to a 1-parameter family of locally CAT(0) piecewise Euclidean metrics on a fixed presentation complex for the group. This information is used to produce an infinite family of 2-dimensional hyperbolic groups, which do not act properly by isometries on any proper CAT(0) metric space of dimension 2. This family includes a free-by-cyclic group with free kernel of rank 6.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the asymptotic expansion of the hyperbolic specification of the colored Jones polynomial of torus knots, we identify different geometric contributions, in particular Chern-Simons invariant and Reidemeister torsion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this paper is to give an explicit formula for the SL2(C)-twisted Reidemeister torsion as defined in [6] in the case of twist knots. For hyperbolic twist knots, we also prove that the twisted Reidemeister torsion at the holonomy representation can be expressed as a rational function evaluated at the cusp shape of the knot. Tables given approximations of the twisted Reidemeister torsion for twist knots on some concrete examples are also enclosed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En aquest treball es tracten qüestions de la geometria integral clàssica a l'espai hiperbòlic i projectiu complex i a l'espai hermític estàndard, els anomenats espais de curvatura holomorfa constant. La geometria integral clàssica estudia, entre d'altres, l'expressió en termes geomètrics de la mesura de plans que tallen un domini convex fixat de l'espai euclidià. Aquesta expressió es dóna en termes de les integrals de curvatura mitja. Un dels resultats principals d'aquest treball expressa la mesura de plans complexos que tallen un domini fixat a l'espai hiperbòlic complex, en termes del que definim com volums intrínsecs hermítics, que generalitzen les integrals de curvatura mitja. Una altra de les preguntes que tracta la geometria integral clàssica és: donat un domini convex i l'espai de plans, com s'expressa la integral de la s-èssima integral de curvatura mitja del convex intersecció entre un pla i el convex fixat? A l'espai euclidià, a l'espai projectiu i hiperbòlic reals, aquesta integral correspon amb la s-èssima integral de curvatura mitja del convex inicial: se satisfà una propietat de reproductibitat, que no es té en els espais de curvatura holomorfa constant. En el treball donem l'expressió explícita de la integral de la curvatura mitja quan integrem sobre l'espai de plans complexos. L'expressem en termes de la integral de curvatura mitja del domini inicial i de la integral de la curvatura normal en una direcció especial: l'obtinguda en aplicar l'estructura complexa al vector normal. La motivació per estudiar els espais de curvatura holomorfa constant i, en particular, l'espai hiperbòlic complex, es troba en l'estudi del següent problema clàssic en geometria. Quin valor pren el quocient entre l'àrea i el perímetre per a successions de figures convexes del pla que creixen tendint a omplir-lo? Fins ara es coneixia el comportament d'aquest quocient en els espais de curvatura seccional negativa i que a l'espai hiperbòlic real les fites obtingudes són òptimes. Aquí provem que a l'espai hiperbòlic complex, les cotes generals no són òptimes i optimitzem la superior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the dynamic and asymmetric dependence structure between equity portfolios from the US and UK. We demonstrate the statistical significance of dynamic asymmetric copula models in modelling and forecasting market risk. First, we construct “high-minus-low" equity portfolios sorted on beta, coskewness, and cokurtosis. We find substantial evidence of dynamic and asymmetric dependence between characteristic-sorted portfolios. Second, we consider a dynamic asymmetric copula model by combining the generalized hyperbolic skewed t copula with the generalized autoregressive score (GAS) model to capture both the multivariate non-normality and the dynamic and asymmetric dependence between equity portfolios. We demonstrate its usefulness by evaluating the forecasting performance of Value-at-Risk and Expected Shortfall for the high-minus-low portfolios. From back-testing, e find consistent and robust evidence that our dynamic asymmetric copula model provides the most accurate forecasts, indicating the importance of incorporating the dynamic and asymmetric dependence structure in risk management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivated by the modelling of structured parasite populations in aquaculture we consider a class of physiologically structured population models, where individuals may be recruited into the population at different sizes in general. That is, we consider a size-structured population model with distributed states-at-birth. The mathematical model which describes the evolution of such a population is a first order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral theory of semigroups to establish conditions for the existence of a positive equilibrium solution of our model. Then we formulate conditions that guarantee that the linearised system is governed by a positive quasicontraction semigroup on the biologically relevant state space. We also show that the governing linear semigroup is eventually compact, hence growth properties of the semigroup are determined by the spectrum of its generator. In case of a separable fertility function we deduce a characteristic equation and investigate the stability of equilibrium solutions in the general case using positive perturbation arguments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The McMillan map is a one-parameter family of integrable symplectic maps of the plane, for which the origin is a hyperbolic fixed point with a homoclinic loop, with small Lyapunov exponent when the parameter is small. We consider a perturbation of the McMillan map for which we show that the loop breaks in two invariant curves which are exponentially close one to the other and which intersect transversely along two primary homoclinic orbits. We compute the asymptotic expansion of several quantities related to the splitting, namely the Lazutkin invariant and the area of the lobe between two consecutive primary homoclinic points. Complex matching techniques are in the core of this work. The coefficients involved in the expansion have a resurgent origin, as shown in [MSS08].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The usual way to investigate the statistical properties of finitely generated subgroups of free groups, and of finite presentations of groups, is based on the so-called word-based distribution: subgroups are generated (finite presentations are determined) by randomly chosen k-tuples of reduced words, whose maximal length is allowed to tend to infinity. In this paper we adopt a different, though equally natural point of view: we investigate the statistical properties of the same objects, but with respect to the so-called graph-based distribution, recently introduced by Bassino, Nicaud and Weil. Here, subgroups (and finite presentations) are determined by randomly chosen Stallings graphs whose number of vertices tends to infinity. Our results show that these two distributions behave quite differently from each other, shedding a new light on which properties of finitely generated subgroups can be considered frequent or rare. For example, we show that malnormal subgroups of a free group are negligible in the raph-based distribution, while they are exponentially generic in the word-based distribution. Quite surprisingly, a random finite presentation generically presents the trivial group in this new distribution, while in the classical one it is known to generically present an infinite hyperbolic group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we consider a representative a priori unstable Hamiltonian system with 2+1/2 degrees of freedom, to which we apply the geometric mechanism for diffusion introduced in the paper Delshams et al., Mem.Amer.Math. Soc. 2006, and generalized in Delshams and Huguet, Nonlinearity 2009, and provide explicit, concrete and easily verifiable conditions for the existence of diffusing orbits. The simplification of the hypotheses allows us to perform explicitly the computations along the proof, which contribute to present in an easily understandable way the geometric mechanism of diffusion. In particular, we fully describe the construction of the scattering map and the combination of two types of dynamics on a normally hyperbolic invariant manifold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas aeruginosa has an anabolic (ArgF) and a catabolic (ArcB) ornithine carbamoyltransferase (OTCase). Despite extensive sequence similarities, these enzymes function unidirectionally in vivo. In the dodecameric catabolic OTCase, homotropic cooperativity for carbamoylphosphate strongly depresses the anabolic reaction; the residue Glu1O5 and the C-terminus are known to be essential for this cooperativity. When Glu1O5 and nine C-terminal amino acids of the catabolic OTCase were introduced, by in vitro genetic manipulation, into the closely related, trimeric, anabolic (ArgF) OTCase of Escherichia coli, the enzyme displayed Michaelis-Menten kinetics and no cooperativity was observed. This indicates that additional amino acid residues are required to produce homotropic cooperativity and a dodecameric assembly. To localize these residues, we constructed several hybrid enzymes by fusing, in vivo or in vitro, the E. coli argF gene to the P. aeruginosa arcB gene. A hybrid enzyme consisting of 101 N-terminal ArgF amino acids fused to 233 C-terminal ArcB residues and the reciprocal ArcB-ArgF hybrid were both trimers with little or no cooperativity. Replacing the seven N-terminal residues of the ArcB enzyme by the corresponding six residues of E. coli ArgF enzyme produced a dodecameric enzyme which showed a reduced affinity for carbamoylphosphate and an increase in homotropic cooperativity. Thus, the N-terminal amino acids of catabolic OTCase are important for interaction with carbamoylphosphate, but do not alone determine dodecameric assembly. Hybrid enzymes consisting of either 26 or 42 N-terminal ArgF amino acids and the corresponding C-terminal ArcB residues were both trimeric, yet they retained some homotropic cooperativity. Within the N-terminal ArcB region, a replacement of motif 28-33 by the corresponding ArgF segment destabilized the dodecameric structure and the enzyme existed in trimeric and dodecameric states, indicating that this region is important for dodecameric assembly. These findings were interpreted in the light of the three-dimensional structure of catabolic OTCase, which allows predictions about trimer-trimer interactions. Dodecameric assembly appears to require at least three regions: the N- and C-termini (which are close to each other in a monomer), residues 28-33 and residues 147-154. Dodecameric structure correlates with high carbamoylphosphate cooperativity and thermal stability, but some trimeric hybrid enzymes retain cooperativity, and the dodecameric Glu1O5-->Ala mutant gives hyperbolic carbamoylphosphate saturation, indicating that dodecameric structure is neither necessary nor sufficient to ensure cooperativity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catadioptric sensors are combinations of mirrors and lenses made in order to obtain a wide field of view. In this paper we propose a new sensor that has omnidirectional viewing ability and it also provides depth information about the nearby surrounding. The sensor is based on a conventional camera coupled with a laser emitter and two hyperbolic mirrors. Mathematical formulation and precise specifications of the intrinsic and extrinsic parameters of the sensor are discussed. Our approach overcomes limitations of the existing omni-directional sensors and eventually leads to reduced costs of production

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper considers some issue in the governance of the European Protected Designation of Origin (PDO). The PDO systems are the outcomes of both farmers and consumers expectations and connect the valorisation of the agricultural and rural resources of given territories to the quality of typical products. A critical point in the governance of the PDO systems is represented by the connection between the quality strategies and the uncertainty. The paper argues that the PDO systems can be thought of as strictly coordinated subsystems in which the ex post governance play a critical role in coping with quality uncertainty. The study suggests that the society's inducements given raise to complex organizational systems in which the allocation of decision rights to PDO collective organizations play a major role. The empirical analysis is carried out by examining ten Italian PDO systems in order to identify the decision rights allocated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we give a new construction of resonant normal forms with a small remainder for near-integrable Hamiltonians at a quasi-periodic frequency. The construction is based on the special case of a periodic frequency, a Diophantine result concerning the approximation of a vector by independent periodic vectors and a technique of composition of periodic averaging. It enables us to deal with non-analytic Hamiltonians, and in this first part we will focus on Gevrey Hamiltonians and derive normal forms with an exponentially small remainder. This extends a result which was known for analytic Hamiltonians, and only in the periodic case for Gevrey Hamiltonians. As applications, we obtain an exponentially large upper bound on the stability time for the evolution of the action variables and an exponentially small upper bound on the splitting of invariant manifolds for hyperbolic tori, generalizing corresponding results for analytic Hamiltonians.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is a sequel to ``Normal forms, stability and splitting of invariant manifolds I. Gevrey Hamiltonians", in which we gave a new construction of resonant normal forms with an exponentially small remainder for near-integrable Gevrey Hamiltonians at a quasi-periodic frequency, using a method of periodic approximations. In this second part we focus on finitely differentiable Hamiltonians, and we derive normal forms with a polynomially small remainder. As applications, we obtain a polynomially large upper bound on the stability time for the evolution of the action variables and a polynomially small upper bound on the splitting of invariant manifolds for hyperbolic tori.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of initial conditions on the speed of propagating fronts in reaction-diffusion equations is examined in the framework of the Hamilton-Jacobi theory. We study the transition between quenched and nonquenched fronts both analytically and numerically for parabolic and hyperbolic reaction diffusion. Nonhomogeneous media are also analyzed and the effect of algebraic initial conditions is also discussed