967 resultados para Optical waveguides


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high quality (Q) factor microring resonator in silicon-on-insulator rib waveguides was fabricated by electron beam lithography, followed by inductively coupled plasma etching. The waveguide dimensions were scaled down to submicron, for a low bending loss and compactness. Experimentally, the resonator has been realized with a quality factor as high as 21,200, as well as a large extinction ratio 12.5dB at telecommunication wavelength near 1550nm. From the measured results, propagation loss in the rib waveguide is determined as low as 6.900/cm. This high Q microring resonator is expected to lead to high speed optical modulators and bio-sensing devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Submicrometer channel and rib waveguides based on SOI (Silicon-On-Insulator) have been designed and fabricated with electron-beam lithography and inductively coupled plasma dry etching. Propagation loss of 8.39dB/mm was measured using the cut-back method. Based on these so-called nanowire waveguides, we have also demonstrated some functional components with small dimensions, including sharp 90 degrees bends with radius of a few micrometers, T-branches, directional couplers and multimode interferometer couplers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The novel design of a silicon optical switch on the mechanism of a reverse p-n junction is proposed. The figuration of contact regions at slab waveguides and the ion implantation technology for creation of junctions are employed in the new design. The two-layer rib structure is helpful for reduction of optical absorption losses induced by metal and heavily-doped contact. And more, simulation results show that the index modulation efficiency of Mach-Zehnder interferometer enhances as the concentrations of dopants in junctions increase, while the trade-off of absorption loss is less than 3 dB/mu m. The phase shift reaches about 5 x 10(-4) pi/mu m at a reverse bias of 10V with the response time of about 0.2ns. The preliminary experimental results are presented. The frequency bandwidth of modulation operation can arrive in the range of GHz. However, heavily-doped contacts have an important effect on pulse response of these switches. While the contact region is not heavily-doped, that means metal electrodes have schottky contacts with p-n junctions, the operation bandwidth of the switch is limited to about 1GHz. For faster response, the heavily-doped contacts must be considered in the design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present fabrication and experimental measurement of a series of photonic crystal waveguides and coupled structure of PC waveguide and PC micro-cavity. The complete devices consist of an injector taper down from 3 mu m into a triangular-lattice air-holes single-line-defect waveguide. We fabricated these devices on a silicon-on-insulator substrate and characterized them using tunable laser source. We've obtained high-efficiency light propagation and broad flat spectrum response of photonic-crystal waveguides. A sharp attenuation at photonic crystal waveguide mode edge was observed for most structures. The edge of guided band is shifted about 31 nm with the 10 nm increase of lattice constant. Mode resonance was observed in coupled structure. Our experimental results indicate that the optical spectra of photonic crystal are very sensitive to structure parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SOI (Silicon on Insulator) based photonic devices has attracted more and more attention in the recent years. Integration of SOI optical switch matrix with isolating grooves, total internal reflection (TIR) mirrors and spot size converter (SSC) was studied. A folding re-arrangeable non-blocking 4x4 optical switch matrix and a blocking 16x16 matrix with TIR mirrors and SSC were fabricated on SOI wafer. The performaces, including extinction ratio and the crosstalk, are better than before. The insertion loss and the polarization dependent loss (PDL) at 1.55 mu m increase slightly with longer device length, more bend and intersecting waveguides. The insertion losses decrease 2 similar to 3 dB when anti-reflection films are added in the ends of the devices. The rise and fall times of the devices are 2.1 mu s and 2.3 mu s, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel compact design for 4-channel SOI-based reconfigurable optical add/drop multiplexer using microring resonators is presented and analyzed. Microring resonators have two important attributes as a key new technology for future optical communications, namely functionality and compactness. Functionality refers to the fact that a wide range of desirable filter characteristics can be synthesized by coupling multiple rings. Compactness refers the fact that ring resonators with radii about 30 mu m can lead to large scale integration of devices with densities on the order of 10(4) similar to 10(5) devices per square centimeter. A 4-channel reconfigurable optical add/drop multiplexer comprises a grid-like array of ridge waveguides which perpendicularly cross through each other. SOI-based resonators consisted of multiple rings at each of the cross-grid nodes serve as the wavelength selective switch, and they can switch an optical signal between two ports by means of tuning refractive index of one of the rings. The thermo-optic coefficient of silicon is 1.86x 10(-4) /K. Thus a temperature rise of 27K will increase the refractive index by 5 x 10(-3), which is enough to cause the switching of our designed microring resonators. The thermo-optic effect is used to suppress the resonator power transfer, rather than to promote loss. Thus, the input signal only suffers small attenuation and simultaneously low crosstalk can be achieved by using multiple rings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The narrow stripe selective growth of the InGaAlAs bulk waveguides and InGaAlAs MQW waveguides was first investigated. Flat and clear interfaces were obtained for the selectively grown InGaAlAs waveguides under optimized growth conditions. These selectively grown InGaAlAs waveguides were covered by specific InP layers, which can keep the waveguides from being oxidized during the fabrication of devices. PL peak wavelength shifts of 70 nm for the InGaAlAs bulk waveguides and 73 nm for the InGaAlAs MQW waveguides were obtained with a small mask stripe width varying from 0 to 40 gm, and were interpreted in considering both the migration effect from the masked region (MMR) and the lateral vapor diffusion effect (LVD). The quality of the selectively grown InGaAlAs MQW waveguides was confirmed by the PL peak intensity and the PL FWHM. Using the narrow stripe selectively grown InGaAlAs MQW waveguides, then the buried heterostructure (BH) lasers were fabricated by a developed unselective regrowth method, instead of conventional selective regrowth. The InGaAlAs MQW BH lasers exhibit good performance characteristics, with a high internal differential quantum efficiency of about 85% and an internal loss of 6.7 cm(-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the dispersion properties of nanometer-scaled silicon waveguides with channel and rib cross section around the optical fiber communication wavelength and systematically study their relationship with the key structural parameters of the waveguide. The simulation results show that the introduction of an extra degree of freedom in the rib depth enables the rib waveguide more flexible in engineering the group velocity dispersion (GVD) compared with the channel waveguide. Besides, we get the structural parameters of the waveguides that can realize zero-GVD at 1550 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waveguides induced by one-dimensional spatial photovoltaic solitons are investigated in both self-defocusing-type and self-focusing-type photorefractive photovoltaic materials. The number of possible guided modes in a waveguide induced by a bright photovoltaic soliton is obtained using numerical techniques. This number of guided modes increases monotonically with increasing intensity ratio, which is the ratio between the peak intensity of the soliton and the sum of the background illumination and the dark irradiance. On the other hand, waveguides induced by dark photovoltaic solitons are always single mode for all intensity ratios, and the higher the intensity ratio, the more confined is the optical energy near the centre of the dark photovoltaic soliton. Relevant examples are provided where photorefractive photovoltaic materials are of self-defocusing and self-focusing types. The properties of soliton-induced waveguides in both self-defocusing-type and self-focusing-type materials are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the effective coupling coefficient k(eff) and the self-coupling coefficient zeta(1) are introduced to describe the characteristic of gratings in a resonant situation when the effects of radiation and other partial waves coupling are considered. The dependence of these two coupling coefficients on grating tooth shapes and depths and the dimensions of graded refractive index (GRIN) waveguides is numerically analysed. The results show that the gratings with linear GRIN waveguides have the largest \k(eff)\. The possibility of realizing a complex-coupled DFB laser, even a pure gain or loss coupled DFB laser, employing only a real refractive index coupled grating is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved 2 ×2 silicon-on-insulator Mach-Zehnder thermo-optical switch is designed and fabricated, which is based on strongly guided multimode interference couplers and single- mode phase-shifting arms. The multimode interference couplers and input/output waveguides are deeply etched to improve coupler performances and coupler-waveguide coupling efficiencies. However, shallow etching is used in the phase-shifting arms to guarantee single-mode property. The strongly guided coupler presents an attractive uniformity about 0. 03 dB and a low propagation loss of -0.6 dB. The 2× 2 switch shows an insertion loss as low as -6.8 dB, where the fiber-waveguide coupling loss of -4.3 dB is included, and the response-time is measured as short as 6.8 μs, which are much better than our previous results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new fabrication technology for three-dimensionally buried silica on silicon optical waveguide based on deep etching and thermal oxidation is presented. Using this method, a silicon layer is left at the side of waveguide. The stress distribution and effective refractive index are calculated by using finite element method and finite different beam propagation method, respectively. The results indicate that the stress of silica on silicon optical waveguide fabricated by this method can be matched in parallel and vertical directions and stress birefringence can be effectively reduced due to the side-silicon layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bloch modes can be excited in planar array due to its periodic lateral refractive index. The power coupled into each eigenmode of the array waveguides is calculated through the overlap integrals of the input field with the eigenmode fields of the coupled infinite array waveguides projected onto the x-axis. Low losses can be obtained if the transition from the array to the free propagation region is adiabatic. Due to the finite resolution of lithographic process the gap between the waveguides will stop abruptly, however, when the waveguides come into too close together. Calculation results show that losses will occur at this discontinuity, which are dependent on the ratio of the gap between the waveguides and grating pitch and on the confinement of field in the array waveguides. Tapered waveguides and low index contrast between the core and cladding layers can lower the transmitted losses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slow-light effects in photonic crystal (PC) waveguides can enhance light-mater interaction near the photonic band edge, which can be used to design a short cavity length semiconductor optical amplifier (SOA). In this paper, a novel SOA based on slow-light effects in PC waveguides (PCSOA) is presented. To realize the amplification of the optical signal with polarization independence, a PCSOA is designed with a compensated structure. The cascaded structure leads to a balanced amplification to the TE and TM polarized light.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light has the greatest information carrying potential of all the perceivable interconnect mediums; consequently, optical fiber interconnects rapidly replaced copper in telecommunications networks, providing bandwidth capacity far in excess of its predecessors. As a result the modern telecommunications infrastructure has evolved into a global mesh of optical networks with VCSEL’s (Vertical Cavity Surface Emitting Lasers) dominating the short-link markets, predominately due to their low-cost. This cost benefit of VCSELs has allowed optical interconnects to again replace bandwidth limited copper as bottlenecks appear on VSR (Very Short Reach) interconnects between co-located equipment inside the CO (Central-Office). Spurred by the successful deployment in the VSR domain and in response to both intra-board backplane applications and inter-board requirements to extend the bandwidth between IC’s (Integrated Circuits), current research is migrating optical links toward board level USR (Ultra Short Reach) interconnects. Whilst reconfigurable Free Space Optical Interconnect (FSOI) are an option, they are complicated by precise line-of-sight alignment conditions hence benefits exist in developing guided wave technologies, which have been classified into three generations. First and second generation technologies are based upon optical fibers and are both capable of providing a suitable platform for intra-board applications. However, to allow component assembly, an integral requirement for inter-board applications, 3rd generation Opto-Electrical Circuit Boards (OECB’s) containing embedded waveguides are desirable. Currently, the greatest challenge preventing the deployment of OECB’s is achieving the out-of-plane coupling to SMT devices. With the most suitable low-cost platform being to integrate the optics into the OECB manufacturing process, several research avenues are being explored although none to date have demonstrated sufficient coupling performance. Once in place, the OECB assemblies will generate new reliability issues such as assembly configurations, manufacturing tolerances, and hermetic requirements that will also require development before total off-chip photonic interconnection can truly be achieved