154 resultados para MQW
Resumo:
The investigations on GaAs/AlGaAs multiple quantum well self electro-optic effect device (SEED) arrays for optoelectronic smart pixels are reported. The hybrid integration of GaAs/AlGaAs multiple quantum well devices flip-chip bonding directly over 1 mu m silicon CMOS circuits are demonstrated. The GaAs/AlGaAs multiple quantum well devices are designed for 850nm operation. The measurement results under applied biases show the good optoelectronic characteristics of elements in SEED arrays. The 4x4 optoelectronic crossbar structure consisting of hybrid CMOS-SEED smart pixels have been designed, which could be potentially used in optical interconnects for multiple processors.
Resumo:
The structural and optical properties of MBE-grown GaAsSb/GaAs multiple quantum wells (MQWs) as well as strain-compensated GaAsSb/GaAs/GaAsP MQWs are investigated. The results of double crystal X-ray diffraction and reciprocal space mapping show that when strain-compensated layers are introduced, the interface quality of QW structure is remarkably improved, and the MQW structure containing GaAsSb layers with a high Sb composition can be coherently grown. Due to the influence of inserted GaAsP layers on the energy band and carrier distribution of QWs, the optical properties of GaAsSb/GaAs/GaAsP MQWs display a lot of features mainly characteristic of type-I QWs despite the type-II GaAsSb/GaAs interfaces exist in the structure. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Photoluminescence (PL) of strained SiGe/Si multiple quantum wells (MQW) with flat and undulated SiGe well layers was studied at different temperature. With elevated temperature from 10K, the no-phonon (NP) peak of the SiGe layers in the flat sample has firstly a blue shift due to the dominant transition converting from bound excitons (BE) to free excitons (FE), and then has a red shift when the temperature is higher than 30K because of the narrowing of the band gap. In the undulated sample, however, monotonous blue shift was observed as the temperature was elevated from 10 K to 287 K. The thermally activated electrons, confined in Si due to type-II band alignment, leak into the SiGe crest regions, and the leakage is enhanced with the elevated temperature. It results in a blue shift of the SiGe luminescence spectra.
Resumo:
Resonant-cavity-enhanced (RCE) photodetectors have been demonstrated to be able to improve the bandwidth-efficiency product. We report one top-illumination and one bottom-illumination SiGe/Si multiple quantum-well (MQW) RCE photodetectors fabricated on a separation-by-implanted-oxygen (SIMOX) wafer operating near 1300nm, The buried oxide layer in SIMOX is used as a mirror to form a vertical cavity with the silicon dioxide/silicon Bragg reflector deposited on the top surface. A peak responsivity with a reverse bias of 5V is measured 10.2mA/W at 1285nm, and a full-width at half maximum of 25nm for the top-illumination RCE photodetector, and 19mA/W at 1305nm, and a full-width at half maximum of 14nm for the bottom-illumination one. The external quantum efficiency of the bottom-illumination RCE photodetector is up to 2.9% at 1305nm with a reverse bias of 25V. The responsivity of the bottom-illumination RCE photodetector is improved by two-fold compared with that of the top-illumination one.
Resumo:
We report on the fabrication of circular waveguide photodetectors with a response near 1.3 mu m wavelength using SiGe/Si multiple quantum wells. The quantum efficiency of the circular waveguide photodetector is improved when compared with that of the rib waveguide photodetector in the same wavelength at 1.3 mu m The frequency response of the photodetectors is simulated. The emciency-bandwidth product of the circular waveguide photodetectors is improved correspondingly. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Hybrid integration of GaAs/AlGaAs multiple quantum well self electro-optic effect device (SEED) arrays are demonstrated flip-chip bonded directly onto 1 mu m silicon CMOS circuits. The GaAs/AlGaAs MQW devices are designed for 850 nm operation. Some devices are used as input light detectors and others serve as output light modulators. The measurement results under applied biases show good optoelectronic characteristics of elements in SEED arrays. Nearly the same reflection spectrum is obtained for the different devices at an array and the contrast ratio is more than 1.2:1 after flip-chip bonding and packaging. The transimpedance receiver-transmitter circuit can be operated at a frequency of 300 MHz.
Resumo:
In this contribution we report the research and development of 1.55 mu m InGaAsP/InP gain-coupled DFB laser with an improved injection-carrier induced grating and of high performance 1.3 mu m and 1.55 mu m InGaAsP/InP FP and DFB lasers for communications. Long wavelength strained MQW laser diodes with a very low threshold current (7-10 mA) have been fabricated. Low pressure MOVPE technology has been employed for the preparation of the layered structure. A novel gain-coupled DFB laser structure with an improved injection-carrier modulated grating has been proposed and fabricated. The laser structures have been prepared by hybrid growth of MOVPE and LPE techniques and reasonably good characteristics have been achieved for resultant lasers. High performance 1.3 mu m and 1.55 mu m InGaAsP/InP DFB lasers have successfully been developed for CATV and trunk line optical fiber communication.
Resumo:
650 nm-range AlGaInP multi-quantum well (MQW) laser diodes grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) have been studied and the results are presented in this paper. Threshold current density of broad area contact laser diodes can be as low as 350 A/cm(2). Laser diodes with buried-ridge strip waveguide structures were made, threshold currents and differential efficiencies are (22-40) mA and (0.2-0.7) mW/mA, respectively. Typical output power for the laser diodes is 5 mW, maximum output power of 15 mW has been obtained. Their operation temperature can be up to 90 degrees C under power of 5 mW. After operating under 90 degrees C and 5 mW for 72 hrs, the average increments for the threshold currents of the lasers at 25 degrees C and the operation currents at 5 mW (at 25 degrees C) are (2-3) mA and (3-5) mA, respectively. Reliability tests showed that no obvious degradation was observed after 1400 hours of CW operation under 50 degrees C and 2.5 mW.
Resumo:
We fabricate 1.5 mu m InGaAsP/InP tunnel injection multiple-quantum-well (TI-MQW) Fabry-Perot (F-P) ridge lasers. The laser heterostructures, including an inner cladding layer and an InP tunnel barrier layer, are grown by metal-organic chemical-vapor deposition (MOCVD). Characteristic temperature.. 0 of 160K at 20 degrees C is obtained for 500-mu m-long lasers. T-0 is measured as high as 88K in the temperature range of 15-75 degrees C. Cavity length dependence of T-0 is investigated.
Resumo:
This thesis presents analytical and numerical results from studies based on the multiple quantum well laser rate equation model. We address the problem of controlling chaos produced by direct modulation of laser diodes. We consider the delay feedback control methods for this purpose and study their performance using numerical simulation. Besides the control of chaos, control of other nonlinear effects such as quasiperiodicity and bistability using delay feedback methods are also investigated.A number of secure communication schemes based on synchronization of chaos semiconductor lasers have been successfully demonstrated theoretically and experimentally. The current investigations in these field include the study of practical issues on the implementations of such encryption schemes. We theoretically study the issues such as channel delay, phase mismatch and frequency detuning on the synchronization of chaos in directly modulated laser diodes. It would be helpful for designing and implementing chaotic encryption schemes using synchronization of chaos in modulated semiconductor lasers.
Resumo:
Cubic phase group III-nitrides were grown using RF plasma assisted Molecular Beam Epitaxy on GaAs (001) substrates. High-resolution X-ray diffraction, photoluminescence, cathodoluminescence and photoreflectance measurements were employed to characterize the structural and optical properties of GaN/AlxGa1-xN Multi Quantum Well (MQW) structures, in which both Aluminum content and well widths were varied. The observed quantized states are in agreement with first-principles based theoretical calculations.
Resumo:
Als ein vielversprechendes Konzept zur Erhöhung der thermoelektrischen Effizienz wird seit Anfang der 90er Jahre die Nutzung niederdimensionaler Systeme angesehen. Aus theoretischen Arbeiten von Hicks und Dresselhaus folgt, dass in ein- und zweidimensionalen Systemen eine Erhöhung der thermoelektrischen Effizienz möglich ist, die einen Durchbruch für die Anwendung thermoelektrischer Wandler zur Folge haben könnte. Die Realisierung solcher niederdimensionaler Systeme ist in geeigneten Mehrlagenstrukturen und durch Verwendung von Halbleiterverbindungen mit unterschiedlicher Energiebandlücke möglich. Ziel des Verbundprojektes Nitherma war es Mehrfachschichtsysteme mit 2-dimensionalem Transportverhalten aus thermoelektrischen Materialien (Pb1-xSrxTe, Bi2(SexTe1-x)3) herzustellen und auf die erwartete hohe thermoelektrische Effizienz zu untersuchen. Diese wurde messtechnischrndurch die Bestimmung der elektrischen Leitfähigkeit, des Seebeck-Koeffizienten und der Wärmeleitfähigkeit parallel zu den Schichtebenen (in-plane-Transporteigenschaft) ermittelt. Ziel dieser Arbeit war einerseits die Verbesserung der Präparations- und Messtechnik bei der Untersuchung der Wärmeleitfähigkeit von Schichten und Schichtsystemen sowie die Demonstration der Reproduzierbarkeit, andererseits die Interpretation der an niederdimensionalen Strukturen ermittelten Transportmessungen. Um den Einfluß der Niederdimensionalität auf die Wärmeleitfähigkeit zu ermitteln, wurden umfangreiche Messungen an unterschiedlich dimensionierten Übergitter- und Multi-Quantum-Well-Strukturen (MQW-Strukturen) durchgeführt. Die Verifizierung der von den Projektpartnern durchgeführten Transportmessungen wurde durch die Messung des Seebeck-Koeffizienten unterstützt.Neben der Charakterisierung durch Transportmessungen erfolgte die Bestimmung der thermoelektrischen Effizienz.