960 resultados para Euler, Teorema de
Resumo:
Neste trabalho, foram analisadas, implementadas e mostradas as características de uma interface com estrutura de programação genérica para o ambiente Windows, criando facilidades de rapidez, confiabilidade e a apresentação de resultados aos usuários do sistema matemático Maple na criação e uso de aplicações matemáticas. A interface utilizou como modelo de implementação cálculos modais de vigas clássicas de Euler-Bernoulli. O usuário encontra, em um único sistema, cálculo para vigas clássicas, terá uma entrada de dados facilitada de variáveis que serão substituídas automaticamente no programa fonte da viga e a geração de resultados em um ambiente amigável com dados e gráficos mostrados de forma organizados.
Resumo:
Neste trabalho, fazendo uso da teoria das equações, iremos cotejar a aplicação de dois métodos clássicos de separação de raízes. Tais métodos, especializados para a "separação" das taxas internas de retorno de um projeto, são superiores às condições de suficiência pois que permitem a determinação do número exato de taxas internas de retorno associadas a um projeto, no intervalo de taxas de juros considerado.
Resumo:
Neste artigo estudamos a relação entre a taxa de juros e o hiato do produto no Brasil através da estimação de modelos Novo-Keynesianos. Para tanto, estimamos os modelos por três métodos: (1) método generalizados dos momentos, (2) máxima verossimilhança utilizando dados de expectativa divulgados pelo Banco Central do Brasil e (3) máxima verossimilhança utilizando variáveis de expectativa estimadas por um modelo VAR. As conclusões são altamente dependentes do método de estimação. Ao utilizar (1), os resultados indicam uma relação espúria entre a taxa de juros real e o hiato. Entretanto, as conclusões originadas de (2) indicam que somente o hiato defasado seria uma variável relevante para a nossa especificação. Ao estimar o modelo por (3), as estimativas corroboram os resultados obtidos com o método generalizados dos momentos.
Resumo:
Neste trabalho estudamos três generalizações para o último Teorema de Fermat. A primeira generalização trata de expoentes negativos e de expoentes racionais. Além de mostrar em que casos estas equações possuem soluções, damos uma caracterização completa para todas as soluções inteiras não-nulas existentes. A segunda generalização também trata de expoentes racionais, porém num contexto mais amplo. Aqui permitimos que as raízes n-ésimas sejam complexas, não necessariamente reais. Na terceira generalização vemos que o último Teorema de Fermat também vale para expoentes inteiros gaussianos.
Resumo:
A contractive method for computing stationary solutions of intertemporal equilibrium models is provide. The method is is implemented using a contraction mapping derived from the first-order conditions. The deterministic dynamic programming problem is used to illustrate the method. Some numerical examples are performed.
Resumo:
A presente dissertação aborda uma técnica para determinar as soluções de sistemas de equações polinomiais. Esta técnica que é puramente algébrica, interliga tópicos da Matemática, como a Geometria Algébrica e a Álgebra Computacional. Mais especificamente, estudamos a teoria de Resultantes e suas aplicações. Começamos com a motivação de encontrar as raízes comuns de dois polinômios a uma variável, em seguida é estendida para o caso mais geral de várias variáveis. Estudamos detalhadamente como obter fórmulas para o cálculo do Resultante, como por exemplo a fórmula de Macaulay e de Poisson. A técnica para resolver sistemas de equações polinomiais é então apresentada. Terminamos apresentando uma prova de um caso particular do Teorema de Bezout, como aplicação da teoria de Resultantes. Este teorema é muito importante, pois fornece um número de soluções de um sistema de equações polinomiais.
Resumo:
The present dissertation analyses Leonhard Euler´s early mathematical work as Diophantine Equations, De solutione problematum diophanteorum per números íntegros (On the solution of Diophantine problems in integers). It was published in 1738, although it had been presented to the St Petersburg Academy of Science five years earlier. Euler solves the problem of making the general second degree expression a perfect square, i.e., he seeks the whole number solutions to the equation ax2+bx+c = y2. For this purpose, he shows how to generate new solutions from those already obtained. Accordingly, he makes a succession of substitutions equating terms and eliminating variables until the problem reduces to finding the solution of the Pell Equation. Euler erroneously assigns this type of equation to Pell. He also makes a number of restrictions to the equation ax2+bx+c = y and works on several subthemes, from incomplete equations to polygonal numbers
Resumo:
Among the many methodological resources that the mathematics teacher can use in the classroom, we can cite the History of Mathematics which has contributed to the development of activities that promotes students curiosity about mathematics and its history. In this regard, the present dissertation aims to translate and analyze, mathematically and historically, the three works of Euler about amicable numbers that were writed during the Eighteenth century with the same title: De numeris amicabilibus. These works, despite being written in 1747 when Euler lived in Berlin, were published in different times and places. The first, published in 1747 in Nova Acta Eruditorum and which received the number E100 in the Eneström index, summarizes the historical context of amicable numbers, mentions the formula 2nxy & 2nz used by his precursors and presents a table containing thirty pairs of amicable numbers. The second work, E152, was published in 1750 in Opuscula varii argument. It is the result of a comprehensive review of Euler s research on amicable numbers which resulted in a catalog containing 61 pairs, a quantity which had never been achieved by any mathematician before Euler. Finally, the third work, E798, which was published in 1849 at the Opera postuma, was probably the first among the three works, to be written by Euler
Resumo:
The equations corresponding to Newton-Euler iterative method for the determination of forces and moments acting on the rigid links of a robotic manipulator are given a new treatment using composed vectors for the representation of both kinematical and dynamical quantities. It is shown that Lagrange equations for the motion of a holonomic system are easily found from the composed vectors defined in this note. Application to a simple model of an industrial robot shows that the method developed in these notes is efficient in solving the dynamics of a robotic manipulator. An example is developed, where it is seen that with the application of appropriate control moments applied to each arm of the robot, starting from a given initial position, it is possible to reach equilibrium in a final pre-assigned position.
Resumo:
The aim of this work is to test an algorithm to estimate, in real time, the attitude of an artificial satellite using real data supplied by attitude sensors that are on board of the CBERS-2 satellite (China Brazil Earth Resources Satellite). The real-time estimator used in this work for attitude determination is the Unscented Kalman Filter. This filter is a new alternative to the extended Kalman filter usually applied to the estimation and control problems of attitude and orbit. This algorithm is capable of carrying out estimation of the states of nonlinear systems, without the necessity of linearization of the nonlinear functions present in the model. This estimation is possible due to a transformation that generates a set of vectors that, suffering a nonlinear transformation, preserves the same mean and covariance of the random variables before the transformation. The performance will be evaluated and analyzed through the comparison between the Unscented Kalman filter and the extended Kalman filter results, by using real onboard data.
Resumo:
Among several theorems which are taught in basic education some of them can be proved in the classroom and others do not, because the degree of difficulty of its formal proof. A classic example is the Fundamental Theorem of Algebra which is not proved, it is necessary higher-level knowledge in mathematics. In this paper, we justify the validity of this theorem intuitively using the software Geogebra. And, based on [2] we will present a clear formal proof of this theorem that is addressed to school teachers and undergraduate students in mathematics
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this article we show that for corank 1, quasi-homogeneous and finitely determined map germs f : (C-n, 0)-> (C-3, 0), n >= 3 one can obtain formulae for the polar multiplicities defined on the following stable types of f, f(Delta(f) and f(Sigma(n-2,1)(f), in terms of the weights and degrees of f. As a consequence we show how to compute the Euler obstruction of such stable types, also in terms of the weights and degrees of f.