820 resultados para Continuing education for science teachers
Resumo:
The implementation of effective science programmes in primary schools is of continuing interest and concern for professional developers. As part of the Australian Academy of Science's approach to creating an awareness of Primary Investigations, a project team trialled a series of satellite television broadcasts of lessons related to two units of the curriculum for Year 3 and 4 children in 48 participating schools. The professional development project entitled Simply Science, included a focused component for the respective classroom teachers, which was also conducted by satellite. This paper reports the involvement of a Year 4 teacher in the project and describes her professional growth. Already an experienced and confident teacher, no quantitative changes in science teaching self efficacy were detected. However, her pedagogical content knowledge and confidence to teach science in the concept areas of matter and energy were enhanced. Changes in the teacher's views about the co-operative learning strategies espoused by Primary Investigations were also evident. Implications for the design of professional development programmes for primary science teachers are discussed.
Resumo:
Although the sciences were being taught in Australian schools well before the Second World War, the only evidence of research studies of this teaching is to be found in the report, published by ACER in 1932 of Roy Stanhope’s survey of the teaching of chemistry in New South Wales and a standardized test he had developed. Roy Stanhope was a science teacher with a research masters degree in chemistry. He had won a scholarship to go to Stanford University for doctoral studies, but returned after one year when his scholarship was not extended. He went on to be a founder in 1943 of the Australian Science Teachers Association (ASTA), which honours this remarkable pioneer through its annual Stanhope Oration. In his retirement Stanhope undertook a comparative study of science
Resumo:
Policy has been a much neglected area for research in science education. In their neglect of policy studies, researchers have maintained an ongoing naivete about the politics of science education. In doing so, they often overestimate the implications of their research findings about practice and ignore the interplay between the stakeholders beyond and in-school who determine the nature of the curriculum for science education and its enacted character. Policies for education (and science education in particular) always involve authority and values, both of which raise sets of fascinating questions for research. The location of authority for science education differs across educational systems in ways that affect the role teachers are expected to play. Policies very often value some groups in society over others, as the long history of attempts to provide science for all students testifies. As research on teaching/learning science identifies pedagogies that have widespread effectiveness, the policy issue of mandating these becomes important. Illustrations of successful policy to practice suggest that establishing conditions that will facilitate the intended implementation is critically important. The responsibility of researchers for critiquing and establishing policy for improving the practice of science education is discussed, together with the role research associations could play if they are to claim their place as key stakeholders in science education.
Resumo:
The Perth Declaration on Science and Technology Education of 2007 expresses strong concern about the state of science and technology education worldwide and calls on governments to respond to a number of suggestions for establishing the structural conditions for their improved practice. The quality of school education in science and technology has never before been of such critical importance to governments. There are three imperatives for its critical importance. The first relates to the traditional role of science in schooling, namely the identification, motivation and initial preparation of those students who will go on to further studies for careers in all those professional fi elds that directly involve science and technology. A suffi cient supply of these professionals is vital to the economy of all countries and to the health of their citizens. In the 21st century they are recognised everywhere as key players in ensuring that industrial and economic development occurs in a socially and environmentally sustainable way. In many countries this supply is now falling seriously short and urgently needs to be addressed. The second imperative is that sustainable technological development and many other possible societal applications of science require the support of scientifically and technologically informed citizens. Without the support and understanding of citizens, technological development can all too easily serve short term and sectional interests. The longer term progress of the whole society is overlooked, citizens will be confused about what should, and what should not be supported, and reactive and the environment will continue to be destroyed rather than sustained. Sustainable development, and the potential that science and technology increasingly offers, involves societies in ways that can often interact strongly, with traditional values, and hence, making decisions about them involve major moral decisions. All students need to be prepared through their science and technology education to be able to participate actively as persons and as responsible citizens in these essential and exciting possibilities. This goal is far from being generally achieved at present, but pathways to it are now more clearly understood. The third imperative derives from the changes that are resulting from the application of digital technologies that are the most rapid, the most widespread, and probably the most pervasive influence that science has ever had on human society. We all, wherever we live, are part of a global communication society. Information exchange and access to it that have been hitherto the realm of the few, are now literally in the hands of individuals. This is leading to profound changes in the World of Work and in what is known as the Knowledge Society. Schooling is now being challenged to contribute to the development in students of an active repertoire of generic and subject-based competencies. This contrasts very strongly with existing priorities, in subjects like the sciences that have seen the size of a student’s a store of established knowledge as the key measure of success. Science and technology education needs to be a key component in developing these competencies. When you add to these imperatives, the possibility that a more effective education in science and technology will enable more and more citizens to delight in, and feel a share in the great human enterprise we call Science, the case for new policy decisions is compellingly urgent. What follows are the recommendations (and some supplementary notes) for policy makers to consider about more operational aspects for improving science and technology education. They are listed under headings that point to the issues within each of these aspects. In the full document, a background is provided to each set of issues, including the commonly current state of science and technology education. Associated with each recommendation for consideration are the positive Prospects that could follow from such decision making, and the necessary Prerequisites, if such bold policy decisions are to fl ow, as intended, into practice in science and technology classrooms.
Resumo:
Efforts to improve mathematics and science content knowledge have in many institutions required redefining teacher education through new teaching and learning. See, for example, Peard & Pumadevi (2007) for an account of one such attempt involving the development of a Foundations Unit, Scientific and Quantitative Literacy. This unit is core for all first year pre-service primary teacher education students at Queensland University of Technology (QUT) and two Education Institutes in Malaysia, Institute Perguruan Raja Melewar (IPRM), and Institute Perguruan Teknik (IPT) Kuala Lumpur. Since then, QUT has modified the unit to adopt a thematic approach to the same content. An aim of the unit rewrite was the development of a positive attitude and disposition to the teaching and learning of mathematics and science, with a curiosity and willingness to speculate about and explore the world. Numeracy was specifically identified within the mathematics encountered and appropriately embedded in the science learning area. The importance of the ability to engage in communication of and about mathematics and science was considered crucial to the development of pre-service primary teachers. Cognisance was given to the appropriate selection and use of technology to enhance learning - digital technologies were embedded in the teaching, learning and assessment of the unit to avoid being considered as an optional extra. This was achieved around the theme of “the sustainable school”. This ‘sustainability’ theme was selected due to its prominence in Australia’s futures-oriented National Curriculum which will be implemented in 2011. This paper outlines the approach taken to the implementation of the unit and discusses early indicators of its effectiveness.
Resumo:
Adolescents are both aware of and have the impetuous to exploit aspects of Science, Technology, Engineering and Mathematics (STEM) within their personal lives. Whether they are surfing, cycling, skateboarding or shopping, STEM concepts impact their lives. However science, mathematics, engineering and technology are still treated in the classroom as separate fragmented entities in the educational environment where most classroom talk is seemingly incomprehensible to the adolescent senses. The aim of this study was to examine the experiences of young adolescents with the aim of transforming school learning at least of science into meaningful experiences that connected with their lives using a self-study approach. Over a 12-month period, the researcher, an experienced secondary-science teacher, designed, implemented and documented a range of pedagogical practices with his Year-7 secondary science class. Data for this case study included video recordings, journals, interviews and surveys of students. By setting an environment empathetic to adolescent needs and understandings, students were able to actively explore phenomena collaboratively through developmentally appropriate experiences. Providing a more contextually relevant environment fostered meta-cognitive practices, encouraged new learning through open dialogue, multi-modal representations and assessments that contributed to building upon, re-affirming, or challenging both the students' prior learning and the teacher’s pedagogical content knowledge. A significant outcome of this study was the transformative experiences of an insider, the teacher as researcher, whose reflections provided an authentic model for reforming pedagogy in STEM classes.
Resumo:
This chapter focuses on two challenges to science teachers’ knowledge that Fensham identifies as having recently emerged—one a challenge from beyond Science and the other a challenge from within Science. Both challenges stem from common features of contemporary society, namely, its complexity and uncertainty. Both also confront science teachers with teaching situations that contrast markedly with the simplicity and certainty that have been characteristic of most school science education, and hence both present new demands for science teachers’ knowledge and skill. The first, the challenge from without Science, comes from the new world of work and the “knowledge society”. Regardless of their success in traditional school learning, many young persons in many modern economies are now seen as lacking other knowledge and skills that are essential for their personal, social and economic life. The second, the challenge from within Science, derives from changing notions of the nature of science itself. If the complexity and uncertainty of the knowledge society demand new understandings and contributions from science teachers, these are certainly matched by the demands that are posed by the role of complexity and uncertainty in science itself.
Resumo:
In this paper I consider a role for risk understanding in school science education. Grounds for this are described in terms of current sociological analyses of the contemporary world as a ‘risk society’ and recent public understanding of science studies where science and risk are concerns commonly linked within the wider community. These concerns connect with support amongst many science educators for the goal of science education for citizenship. From this perspective scientific literacy for decision making on contemporary socioscientific issues is central. I argue that in such decision making risk understanding has an important role to play. I examine some of the challenges its inclusion in school science presents to science teachers, review previous writing about risk in the science education literature and consider how knowledge about risk might be addressed in school science. I also outline the varying conceptions of risk and suggest some future research directions which would support the inclusion of risk in classroom discussions of socioscientific issues.
Resumo:
In this article, I present my experience with integrating an alternate reality gaming (ARG) framework into a pre-service science teacher education course. My goal is to provide an account of my experiences that can inform other science education practitioners at the tertiary and secondary levels that wish to adopt a similar approach in their classes. A game was designed to engage pre-service teachers with issues surrounding the declining enrolments in science, technology, engineering and mathematics disciplines (i.e., the STEM crisis; Tytler, 2007) and ways of re-engaging learners with STEM subjects. The use of ARG in science education is highly innovative. Literature on the use of ARG for educational purposes is scarce so in the article I have drawn on a range of available literature on gaming and ARG to define what it is and to suggest how it can be included in school science classrooms.
Resumo:
This paper reports results from a study comparing teachers’ and students’ perceptions about the relative degree of influence parents, teachers, friends, older students and careers advisors have on students’ decisions about enrolling in non-compulsory high school science subjects. The comparison was carried out as part of the Choosing Science project - a large-scale Australian study of 15 year-old students’ experiences of school science and intentions regarding further participation. The study found that students considered their science teachers to have had the greatest influence, followed by parents and then friends. In contrast, however, science teachers believed their students to be most influenced in their decisions by friends and peers, followed by older students and siblings and parents, with teachers themselves having relatively little influence. Both groups believed that advice from careers advisors was of little influence. The findings are unique in the science education literature in providing an insight into differences and similarities in the perceptions of students and their teachers. In particular they indicate that teachers play a far greater role in students’ decisions about enrolling in science than they believe. This has important implications for science teachers and teacher educators in terms of appreciating their influence and applying it in ways that encourage participation in science courses.
Resumo:
The role of emotion during learning encounters in science teacher education is under-researched and under-theorized. In this case study we explore the emotional climates, that is, the collective states of emotional arousal, of a preservice secondary science education class to illuminate practice for producing and reproducing high quality learning experiences for preservice science teachers. Theories related to the sociology of emotions informed our analyses from data sources such as preservice teachers’ perceptions of the emotional climate of their class, emotional facial expressions, classroom conversations, and cogenerative dialogue. The major outcome from our analyses was that even though preservice teachers reported high positive emotional climate during the professor’s science demonstrations, they also valued the professor’s in the moment reflections on her teaching that were associated with low emotional climate ratings. We co-relate emotional climate data and preservice teachers’ comments during cogenerative dialogue to expand our understanding of high quality experiences and emotional climate in science teacher education. Our study also contributes refinements to research perspectives on emotional climate.
Resumo:
An integrated approach to assessment afforded pre-service teachers the opportunity to learn about a local sustainability issue through three learning areas: science and technology,the arts and studies of society and environment (SOSE). Three sustainability issues chosen by the pre-service teachers are presented in this paper highlighting the science concepts explored. Affordances and constraints of the integrated task are discussed in the conclusion.
Resumo:
Preservice teachers articulate the need for more teaching experiences for developing their practices, however, extending beyond existing school arrangements may present difficulties. Thus, it is important to understand preservice teachers’ development of pedagogical knowledge practices when in the university setting. This mixed-method study investigated 48 second-year preservice teachers’ development of pedagogical knowledge practices as a result of co-teaching primary science to peers. Data were collected through a survey, video-recorded lessons, extended written responses and researcher observations. The study showed how these preservice teachers demonstrated 9 of 11 pedagogical knowledge practices within the co-teaching arrangement. However, research is needed to determine the level of development on each pedagogical knowledge practice and how these practices can be transferred into authentic primary classroom settings.