816 resultados para Computer-assisted chemotaxonomy
Resumo:
Introduction: Computer-Aided-Design (CAD) and Computer-Aided-Manufacture (CAM) has been developed to fabricate fixed dental restorations accurately, faster and improve cost effectiveness of manufacture when compared to the conventional method. Two main methods exist in dental CAD/CAM technology: the subtractive and additive methods. While fitting accuracy of both methods has been explored, no study yet has compared the fabricated restoration (CAM output) to its CAD in terms of accuracy. The aim of this present study was to compare the output of various dental CAM routes to a sole initial CAD and establish the accuracy of fabrication. The internal fit of the various CAM routes were also investigated. The null hypotheses tested were: 1) no significant differences observed between the CAM output to the CAD and 2) no significant differences observed between the various CAM routes. Methods: An aluminium master model of a standard premolar preparation was scanned with a contact dental scanner (Incise, Renishaw, UK). A single CAD was created on the scanned master model (InciseCAD software, V2.5.0.140, UK). Twenty copings were then fabricated by sending the single CAD to a multitude of CAM routes. The copings were grouped (n=5) as: Laser sintered CoCrMo (LS), 5-axis milled CoCrMo (MCoCrMo), 3-axis milled zirconia (ZAx3) and 4-axis milled zirconia (ZAx4). All copings were micro-CT scanned (Phoenix X-Ray, Nanotom-S, Germany, power: 155kV, current: 60µA, 3600 projections) to produce 3-Dimensional (3D) models. A novel methodology was created to superimpose the micro-CT scans with the CAD (GOM Inspect software, V7.5SR2, Germany) to indicate inaccuracies in manufacturing. The accuracy in terms of coping volume was explored. The distances from the surfaces of the micro-CT 3D models to the surfaces of the CAD model (CAD Deviation) were investigated after creating surface colour deviation maps. Localised digital sections of the deviations (Occlusal, Axial and Cervical) and selected focussed areas were then quantitatively measured using software (GOM Inspect software, Germany). A novel methodology was also explored to digitally align (Rhino software, V5, USA) the micro-CT scans with the master model to investigate internal fit. Fifty digital cross sections of the aligned scans were created. Point-to-point distances were measured at 5 levels at each cross section. The five levels were: Vertical Marginal Fit (VF), Absolute Marginal Fit (AM), Axio-margin Fit (AMF), Axial Fit (AF) and Occlusal Fit (OF). Results: The results of the volume measurement were summarised as: VM-CoCrMo (62.8mm3 ) > VZax3 (59.4mm3 ) > VCAD (57mm3 ) > VZax4 (56.1mm3 ) > VLS (52.5mm3 ) and were all significantly different (p presented as areas with different colour. No significant differences were observed at the internal aspect of the cervical aspect between all groups of copings. Significant differences (p< M-CoCrMo Internal Occlusal, Internal Axial and External Axial 2 ZAx3 > ZAx4 External Occlusal, External Cervical 3 ZAx3 < ZAx4 Internal Occlusal 4 M-CoCrMo > ZAx4 Internal Occlusal and Internal Axial The mean values of AMF and AF were significantly (p M-CoCrMo and CAD > ZAx4. Only VF of M-CoCrMo was comparable with the CAD Internal Fit. All VF and AM values were within the clinically acceptable fit (120µm). Conclusion: The investigated CAM methods reproduced the CAD accurately at the internal cervical aspect of the copings. However, localised deviations at axial and occlusal aspects of the copings may suggest the need for modifications in these areas prior to fitting and veneering with porcelain. The CAM groups evaluated also showed different levels of Internal Fit thus rejecting the null hypotheses. The novel non-destructive methodologies for CAD/CAM accuracy and internal fit testing presented in this thesis may be a useful evaluation tool for similar applications.
Resumo:
Interacting with a computer system in the operating room (OR) can be a frustrating experience for a surgeon, who currently has to verbally delegate to an assistant every computer interaction task. This indirect mode of interaction is time consuming, error prone and can lead to poor usability of OR computer systems. This thesis describes the design and evaluation of a joystick-like device that allows direct surgeon control of the computer in the OR. The device was tested extensively in comparison to a mouse and delegated dictation with seven surgeons, eleven residents, and five graduate students. The device contains no electronic parts, is easy to use, is unobtrusive, has no physical connection to the computer and makes use of an existing tool in the OR. We performed a user study to determine its effectiveness in allowing a user to perform all the tasks they would be expected to perform on an OR computer system during a computer-assisted surgery. Dictation was found to be superior to the joystick in qualitative measures, but the joystick was preferred over dictation in user satisfaction responses. The mouse outperformed both joystick and dictation, but it is not a readily accepted modality in the OR.
Resumo:
[Sin resumen]
Resumo:
Microvessel density (MVD) is a widely used surrogate measure of angiogenesis in pathological specimens and tumour models. Measurement of MVD can be achieved by several methods. Automation of counting methods aims to increase the speed, reliability and reproducibility of these techniques. The image analysis system described here enables MVD measurement to be carried out with minimal expense in any reasonably equipped pathology department or laboratory. It is demonstrated that the system translates easily between tumour types which are suitably stained with minimal calibration. The aim of this paper is to offer this technique to a wider field of researchers in angiogenesis.
Resumo:
Y. Zhu, S. Williams and R. Zwiggelaar, 'Computer technology in detection and staging of prostate carcinoma: a review', Medical Image Analysis 10 (2), 178-199 (2006)
Resumo:
This paper introduces an automated computer- assisted system for the diagnosis of cervical intraepithelial neoplasia (CIN) using ultra-large cervical histological digital slides. The system contains two parts: the segmentation of squamous epithelium and the diagnosis of CIN. For the segmentation, to reduce processing time, a multiresolution method is developed. The squamous epithelium layer is first segmented at a low (2X) resolution. The boundaries are further fine tuned at a higher (20X) resolution. The block-based segmentation method uses robust texture feature vectors in combination with support vector machines (SVMs) to perform classification. Medical rules are finally applied. In testing, segmentation using 31 digital slides achieves 94.25% accuracy. For the diagnosis of CIN, changes in nuclei structure and morphology along lines perpendicular to the main axis of the squamous epithelium are quantified and classified. Using multi-category SVM, perpendicular lines are classified into Normal, CIN I, CIN II, and CIN III. The robustness of the system in term of regional diagnosis is measured against pathologists' diagnoses and inter-observer variability between two pathologists is considered. Initial results suggest that the system has potential as a tool both to assist in pathologists' diagnoses, and in training.
Resumo:
Ensuring that all graduates are able to exploit new technologies is a primary goal of all UK universities and a variety of assumptions have underpinned policies designed to promote this goal, This paper explores some of these assumptions through the findings of a. longitudinal study involving a cohort of over 800 university students. The study adopted a student perspective to examine the factors affecting their use of computers over a three year period. Unsurprisingly, the results indicated that situational factors (e.g. access, training and time) influence the extent to which students use computers, but a disparity was found in the importance attributed to these factors by the academic staff, who focused on the needs of their department, and by the students, who focused on their individual needs. Results suggest that increased attention to a student perspective may lead to improved strategic planning in students' use of computers.
Resumo:
Timely and individualized feedback on coursework is desirable from a student perspective as it facilitates formative development and encourages reflective learning practice. Faculty however are faced with a significant and potentially time consuming challenge when teaching larger cohorts if they are to provide feedback which is timely, individualized and detailed. Additionally, for subjects which assess non-traditional submissions, such as Computer-Aided-Design (CAD), the methods for assessment and feedback tend not to be so well developed or optimized. Issues can also arise over the consistency of the feedback provided. Evaluations of Computer-Assisted feedback in other disciplines (Denton et al, 2008), (Croft et al, 2001) have shown students prefer this method of feedback to traditional “red pen” marking and also that such methods can be more time efficient for faculty.
Herein, approaches are described which make use of technology and additional software tools to speed up, simplify and automate assessment and the provision of feedback for large cohorts of first and second year engineering students studying modules where CAD files are submitted electronically. A range of automated methods are described and compared with more “manual” approaches. Specifically one method uses an application programming interface (API) to interrogate SolidWorks models and extract information into an Excel spreadsheet, which is then used to automatically send feedback emails. Another method describes the use of audio recordings made during model interrogation which reduces the amount of time while increasing the level of detail provided as feedback.
Limitations found with these methods and problems encountered are discussed along with a quantified assessment of time saving efficiencies made.
Resumo:
Therapeutic drug monitoring (TDM) aims to optimize treatments by individualizing dosage regimens based on the measurement of blood concentrations. Dosage individualization to maintain concentrations within a target range requires pharmacokinetic and clinical capabilities. Bayesian calculations currently represent the gold standard TDM approach but require computation assistance. In recent decades computer programs have been developed to assist clinicians in this assignment. The aim of this survey was to assess and compare computer tools designed to support TDM clinical activities. The literature and the Internet were searched to identify software. All programs were tested on personal computers. Each program was scored against a standardized grid covering pharmacokinetic relevance, user friendliness, computing aspects, interfacing and storage. A weighting factor was applied to each criterion of the grid to account for its relative importance. To assess the robustness of the software, six representative clinical vignettes were processed through each of them. Altogether, 12 software tools were identified, tested and ranked, representing a comprehensive review of the available software. Numbers of drugs handled by the software vary widely (from two to 180), and eight programs offer users the possibility of adding new drug models based on population pharmacokinetic analyses. Bayesian computation to predict dosage adaptation from blood concentration (a posteriori adjustment) is performed by ten tools, while nine are also able to propose a priori dosage regimens, based only on individual patient covariates such as age, sex and bodyweight. Among those applying Bayesian calculation, MM-USC*PACK© uses the non-parametric approach. The top two programs emerging from this benchmark were MwPharm© and TCIWorks. Most other programs evaluated had good potential while being less sophisticated or less user friendly. Programs vary in complexity and might not fit all healthcare settings. Each software tool must therefore be regarded with respect to the individual needs of hospitals or clinicians. Programs should be easy and fast for routine activities, including for non-experienced users. Computer-assisted TDM is gaining growing interest and should further improve, especially in terms of information system interfacing, user friendliness, data storage capability and report generation.
Resumo:
This paper presents two studies, both examining the efficacy of a computer programme (Captain's Log) in training attentional skills. The population of interest is the traumatically brain injured. Study #1 is a single-case design that offers recommendations for the second, .larger (N=5) inquiry. Study #2 is an eight-week hierarchical treatment programme with a multi-based testing component. Attention, memory, listening comprehension, locus-of-control, self-esteem, visuo-spatial, and general outcome measures are employed within the testing schedule. Results suggest that any improvement was a result of practice effects. With a few single-case exceptions, the participants showed little improvement in the dependent measures.
Resumo:
This study had three purposes related to the effective implem,entation and practice of computer-mediated online distance education (C-MODE) at the elementary level: (a) To identify a preliminary framework of criteria 'or guidelines for effective implementation and practice, (b) to identify areas ofC-MODE for which criteria or guidelines of effectiveness have not yet been developed, and (c) to develop an implementation and practice criteria questionnaire based on a review of the distance education literature, and to use the questionnaire in an exploratory survey of elementary C-MODE practitioners. Using the survey instrument, the beliefs and attitudes of 16 elementary C'- MODE practitioners about what constitutes effective implementation and practice principles were investigated. Respondents, who included both administrators and instructors, provided information about themselves and the program in which they worked. They rated 101 individual criteria statenlents on a 5 point Likert scale with a \. point range that included the values: 1 (Strongly Disagree), 2 (Disagree), 3 (Neutral or Undecided), 4 (Agree), 5 (Strongly Agree). Respondents also provided qualitative data by commenting on the individual statements, or suggesting other statements they considered important. Eighty-two different statements or guidelines related to the successful implementation and practice of computer-mediated online education at the elementary level were endorsed. Response to a small number of statements differed significantly by gender and years of experience. A new area for investigation, namely, the role ofparents, which has received little attention in the online distance education literature, emerged from the findings. The study also identified a number of other areas within an elementary context where additional research is necessary. These included: (a) differences in the factors that determine learning in a distance education setting and traditional settings, (b) elementary students' ability to function in an online setting, (c) the role and workload of instructors, (d) the importance of effective, timely communication with students and parents, and (e) the use of a variety of media.