905 resultados para optimal linear control design
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper deals with an energy pumping that occurs in a (MEMS) Gyroscope nonlinear dynamical system, modeled with a proof mass constrained to move in a plane with two resonant modes, which are nominally orthogonal. The two modes are ideally coupled only by the rotation of the gyro about the plane's normal vector. We also developed a linear optimal control design for reducing the oscillatory movement of the nonlinear systems to a stable point.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper we study the behavior of a semi-active suspension witch external vibrations. The mathematical model is proposed coupled to a magneto rheological (MR) damper. The goal of this work is stabilize of the external vibration that affect the comfort and durability an vehicle, to control these vibrations we propose the combination of two control strategies, the optimal linear control and the magneto rheological (MR) damper. The optimal linear control is a linear feedback control problem for nonlinear systems, under the optimal control theory viewpoint We also developed the optimal linear control design with the scope in to reducing the external vibrating of the nonlinear systems in a stable point. Here, we discuss the conditions that allow us to the linear optimal control for this kind of non-linear system.
Resumo:
In this paper, a load transportation system in platforms or suspended by cables is considered. It is a monorail device and is modelled as an inverted pendulum built on a car driven by a DC motor. The governing equations of motion were derived via Lagrange's equations. In the mathematical model we consider the interaction between the DC motor and the dynamical system, that is, we have a so-called non-ideal periodic problem. The problem is analysed and we also developed an optimal linear control design to stabilize the problem.
Resumo:
In this work, we analyzed a bifurcational behavior of a longitudinal flight nonlinear dynamics, taking as an example the F-8 aircraft Crusader. We deal with an analysis of high angles of attack in order to stabilize the oscillations; those were close to the critical angle of the aircraft, in the flight conditions, established. We proposed a linear optimal control design applied to the considered nonlinear aircraft model below angle of stall, taking into account regions of Hopf and saddled noddle bifurcations.
Resumo:
In this work, we use a nonlinear control based on Optimal Linear Control. We used as mathematical model a Duffing equation to model a supporting structure for an unbalanced rotating machine with limited power (non-ideal motor). Numerical simulations are performed for a set control parameter (depending on the voltage of the motor, that is, in the static and dynamic characteristic of the motor) The interaction of the non-ideal excitation with the structure may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the system. Chaotic behavior is obtained for values of the parameters. Then, the proposed control strategy is applied in order to regulate the chaotic behavior, in order to obtain a periodic orbit and to decrease its amplitude. Both methodologies were used in complete agreement between them. The purpose of the paper is to give suggestions and recommendations to designers and engineers on how to drive this kind of system through resonance.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper, a micro-electro-mechanical systems (MEMS) with parametric uncertainties is considered. The non-linear dynamics in MEMS system is demonstrated with a chaotic behavior. We present the linear optimal control technique for reducing the chaotic movement of the micro-electromechanical system with parametric uncertainties to a small periodic orbit. The simulation results show the identification by linear optimal control is very effective. © 2013 Academic Publications, Ltd.
Resumo:
In this work, the linear and nonlinear feedback control techniques for chaotic systems were been considered. The optimal nonlinear control design problem has been resolved by using Dynamic Programming that reduced this problem to a solution of the Hamilton-Jacobi-Bellman equation. In present work the linear feedback control problem has been reformulated under optimal control theory viewpoint. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations for the Rössler system and the Duffing oscillator are provided to show the effectiveness of this method. Copyright © 2005 by ASME.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper considers an aircraft collision avoidance design problem that also incorporates design of the aircraft’s return-to-course flight. This control design problem is formulated as a non-linear optimal-stopping control problem; a formulation that does not require a prior knowledge of time taken to perform the avoidance and return-to-course manoeuvre. A dynamic programming solution to the avoidance and return-to-course problem is presented, before a Markov chain numerical approximation technique is described. Simulation results are presented that illustrate the proposed collision avoidance and return-to-course flight approach.